1
|
Liu K, Yu S, Ye L, Gao B. The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration. Front Pharmacol 2021; 12:680209. [PMID: 34354584 PMCID: PMC8329335 DOI: 10.3389/fphar.2021.680209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Regenerative endodontic therapy intends to induce the host’s natural wound-healing process, which can restore the vitality, immunity, and sensitivity of the inflammatory or necrotic pulp tissue destroyed by infection or trauma. Myriads of growth factors are critical in the processes of pulp repair and regeneration. Among the key regulatory factors are the fibroblast growth factors, which have turned out to be the master regulators of both organogenesis and tissue homeostasis. Fibroblast growth factors, a family composed of 22 polypeptides, have been used in tissue repair and regeneration settings, in conditions as diverse as burns, ulcers, bone-related diseases, and spinal cord injuries. Meanwhile, in dentistry, the basic fibroblast growth factor is the most frequently investigated. Thereby, the aim of this review is 2-fold: 1) foremost, to explore the underlying mechanisms of the bFGF in dental pulp repair and regeneration and 2) in addition, to shed light on the potential therapeutic strategies of the bFGF in dental pulp–related clinical applications.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jauković A, Kukolj T, Trivanović D, Okić-Đorđević I, Obradović H, Miletić M, Petrović V, Mojsilović S, Bugarski D. Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF. J Cell Physiol 2021; 236:7322-7341. [PMID: 33934350 DOI: 10.1002/jcp.30399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) have been identified within dental pulp tissues of exfoliated deciduous (SHEDs) and permanent (DPSCs) teeth. Although differences in their proliferative and differentiation properties were revealed, variability in SHEDs and DPSCs responsiveness to growth factors and cytokines have not been studied before. Here, we investigated the influence of interleukin-17 (IL-17) and basic fibroblast growth factor (bFGF) on stemness features of SHEDs and DPSCs by analyzing their proliferation, clonogenicity, cell cycle progression, pluripotency markers expression and differentiation after 7-day treatment. Results indicated that IL-17 and bFGF differently affected SHEDs and DPSCs proliferation and clonogenicity, since bFGF increased proliferative and clonogenic potential of both cell types, while IL-17 similarly affected SHEDs, exerting no effects on adult counterparts DPSCs. In addition, both factors stimulated NANOG, OCT4, and SOX2 pluripotency markers expression in SHEDs and DPSCs showing diverse intracellular expression patterns dependent on MSCs type. As for the differentiation capacity, both factors displayed comparable effects on SHEDs and DPSCs, including stimulatory effect of IL-17 on early osteogenesis in contrast to the strong inhibitory effect showed for bFGF, while having no impact on SHEDs and DPSCs chondrogenesis. Moreover, bFGF combined with IL-17 reduced CD90 and stimulated CD73 expression on both types of MSCs, whereas each factor induced IL-6 expression indicating its' role in IL-17/bFGF-modulated properties of SHEDs and DPSCs. All these data demonstrated that dental pulp MSCs from primary and permanent teeth exert intrinsic features, providing novel evidence on how IL-17 and bFGF affect stem cell properties important for regeneration of dental pulp at different ages.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.,IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Würzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Würzburg, Würzburg, Germany
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Maja Miletić
- Department of Pathophysiology, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Vanja Petrović
- Department of Pediatric and Preventive Dentistry, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Novais A, Chatzopoulou E, Chaussain C, Gorin C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021; 10:932. [PMID: 33920587 PMCID: PMC8073160 DOI: 10.3390/cells10040932] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Bone is a hard-vascularized tissue, which renews itself continuously to adapt to the mechanical and metabolic demands of the body. The craniofacial area is prone to trauma and pathologies that often result in large bone damage, these leading to both aesthetic and functional complications for patients. The "gold standard" for treating these large defects is autologous bone grafting, which has some drawbacks including the requirement for a second surgical site with quantity of bone limitations, pain and other surgical complications. Indeed, tissue engineering combining a biomaterial with the appropriate cells and molecules of interest would allow a new therapeutic approach to treat large bone defects while avoiding complications associated with a second surgical site. This review first outlines the current knowledge of bone remodeling and the different signaling pathways involved seeking to improve our understanding of the roles of each to be able to stimulate or inhibit them. Secondly, it highlights the interesting characteristics of one growth factor in particular, FGF-2, and its role in bone homeostasis, before then analyzing its potential usefulness in craniofacial bone tissue engineering because of its proliferative, pro-angiogenic and pro-osteogenic effects depending on its spatial-temporal use, dose and mode of administration.
Collapse
Affiliation(s)
- Anita Novais
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Eirini Chatzopoulou
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
- Département de Parodontologie, Université de Paris, UFR Odontologie-Garancière, 75006 Paris, France
| | - Catherine Chaussain
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Caroline Gorin
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| |
Collapse
|
4
|
Luo L, Zhang Y, Chen H, Hu F, Wang X, Xing Z, Albashari AA, Xiao J, He Y, Ye Q. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif 2020; 54:e12969. [PMID: 33332682 PMCID: PMC7848956 DOI: 10.1111/cpr.12969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Department of Stomatology, Ningbo Women and Children Hospital, Ningbo, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Growth factors-based beneficial effects of platelet lysate on umbilical cord-derived stem cells and their synergistic use in osteoarthritis treatment. Cell Death Dis 2020; 11:857. [PMID: 33057008 PMCID: PMC7560841 DOI: 10.1038/s41419-020-03045-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Poor viability of mesenchymal stem cells (MSCs) at the transplanted site often hinders the efficacy of MSCs-based therapy. Platelet lysate (PL) contains rich amounts of growth factors, which benefits cell growth. This study aimed to explore how human PL benefits umbilical cord-derived MSCs (huc-MSCs), and whether they have synergistic potential in osteoarthritis (OA) treatment. As quality control, flow cytometry and specific staining were performed to identify huc-MSCs, and ELISA was used to quantify growth factors in PL. CCK-8 and flow cytometry assays were performed to evaluate the effects of PL on the cell viability and cell cycle progression of huc-MSCs. Wound healing and transwell assays were conducted to assess the migration of huc-MSCs. RNA sequencing, real time PCR, and Western blot assays were conducted to explore the growth factors-based mechanism of PL. The in vitro results showed that PL significantly promoted the proliferation, cell cycle, and migration of huc-MSCs by upregulating relevant genes/proteins and activating beclin1-dependent autophagy via the AMPK/mTOR signaling pathway. The main growth factors (PDGF-AA, IGF-1, TGF-β, EGF, and FGF) contributed to the effects of PL in varying degrees. The in vivo data showed that combined PL and huc-MSCs exerted significant synergistic effect against OA. The overall study determined the beneficial effects and mechanism of PL on huc-MSCs and indicated PL as an adjuvant for huc-MSCs in treating OA. This is the first report on the growth factors-based mechanism of PL on huc-MSCs and their synergistic application. It provides novel knowledge of PLʹs roles and offers a promising strategy for stem cell-based OA therapy by combining PL and huc-MSCs.
Collapse
|
6
|
Nowwarote N, Manokawinchoke J, Kanjana K, Fournier BPJ, Sukarawan W, Osathanon T. Transcriptome analysis of basic fibroblast growth factor treated stem cells isolated from human exfoliated deciduous teeth. Heliyon 2020; 6:e04246. [PMID: 32617420 PMCID: PMC7322690 DOI: 10.1016/j.heliyon.2020.e04246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF) regulates cell proliferation, migration, and differentiation in various cell types. The aim of the present study was to determine the bFGF target genes in stem cells isolated from human exfoliated deciduous teeth (SHEDs). Methods Cells were isolated from pulp tissue obtained from exfoliated deciduous teeth. Mesenchymal stem cell surface markers and the differentiation potential toward adipogenic and neurogenic lineages were characterized. The bFGF-treated SHED transcriptome was examined using a high throughput RNA sequencing technique. The mRNA and protein expression of selected genes were evaluated using real-time polymerase chain reaction and immunofluorescence staining, respectively. Cell cycle analysis was performed by flow cytometry. The colony forming unit number was also examined. Results The isolated cells expressed CD44, CD90, CD105, but not CD45. The upregulation of adipogenic and neurogenic marker genes was observed after culturing cells in the appropriate induction medium. Transcriptome analysis of the bFGF treated cells revealed that the upregulated genes were in the cell cycle related pathways, while the downregulated genes were in the extracellular matrix related pathways. Correspondingly, bFGF induced MKI67 mRNA expression and Ki67 protein expression. Furthermore, bFGF treatment significantly decreased the G0/G1, but increased the G2/M, population in SHEDs. Colony formation was markedly increased in the bFGF treated group and was attenuated by pretreating the cells with FGFR or PI3K inhibitors. Conclusion bFGF controls cell cycle progression in SHEDs. Thus, it can be used to amplify cell number to obtain the amount of cells required for regenerative treatments.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Kiattipan Kanjana
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, Molecular Oral Physiopathology, Paris, France.,Faculty of Dentistry Garanciere, Universite de Paris, France
| | - Waleerat Sukarawan
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| |
Collapse
|
7
|
Fujimoto Y, Yokozeki T, Yokoyama A, Tabata Y. Basic fibroblast growth factor enhances proliferation and hepatocyte growth factor expression of feline mesenchymal stem cells. Regen Ther 2020; 15:10-17. [PMID: 32490062 PMCID: PMC7256438 DOI: 10.1016/j.reth.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to evaluate the effect of basic fibroblast growth factor (bFGF) on the proliferation and secretion activity of feline adipose-derived mesenchymal stem cells (MSC). Methods Feline MSC isolated from the subcutaneous adipose tissue of cats were cultured with or without bFGF. Results The bFGF addition enhanced the proliferation of feline MSC to a significant great extent compared with that without bFGF, although the cell proliferation tended to increase with the bFGF concentration. In addition, adipogenic and osteogenic staining assay demonstrated that the bFGF addition allowed MSC to maintain the differentiation ability even after the proliferation. Moreover, no change in the surface markers of MSC was observed between the cultures with or without bFGF. A quantitative RT-PCR assay revealed that the HGF and TSG-6 expression significantly increased by the bFGF addition. The highest mRNA expression of MMP-2 was observed for cells cultured in 1000 ng/ml bFGF concentration. Conclusions The culture with bFGF is a promising way to enhance the proliferation, and HGF secretion ability of MSC as well as maintain their differentiation ability and immunophenotype nature. Feline adipose-derived mesenchymal stem cells (MSC) was cultured with or without the basic fibroblast growth factor (bFGF). The bFGF enhanced the proliferation and increased the mRNA expression of HGF, TSG-6, and MMP-2. The bFGF addition was not influenced to the differentiation ability and cell surface marker of MSC.
Collapse
Key Words
- Basic fibroblast growth factor
- CKD, chronic kidney disease
- ECM, extracellular matrix
- FBS, fetal bovine serum
- FGF, basic fibroblast growth factor
- Feline
- GAPDH, gliyceraldehyde-3-phosphate dehydrogenase
- HGF, hepatocyte growth factor
- Hepatocyte growth factor
- MMP-2, matrix metalloproteinase-2
- MSC, mesenchymal stem cells
- Mesenchymal stem cell
- P1, passage 1
- Proliferation
- SVF, stromal vascular fraction
- TSG-6, tumor necrosis factor-stimulated gene 6
- Tumor necrosis factor-stimulated gene 6
Collapse
Affiliation(s)
- Youhei Fujimoto
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Cheng Y, Lin K, Young T, Cheng N. The influence of fibroblast growth factor 2 on the senescence of human adipose-derived mesenchymal stem cells during long-term culture. Stem Cells Transl Med 2020; 9:518-530. [PMID: 31840944 PMCID: PMC7103622 DOI: 10.1002/sctm.19-0234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) exhibit great potential in regenerative medicine, and in vitro expansion is frequently necessary to obtain a sufficient number of ASCs for clinical use. Fibroblast growth factor 2 (FGF2) is a common supplement in the ASC culture medium to enhance cell proliferation. To achieve clinical applicability of ASC-based products, prolonged culture of ASCs is sometimes required to obtain sufficient quantity of ASCs. However, the effect of FGF2 on ASCs during prolonged culture has not been previously determined. In this study, ASCs were subjected to prolonged in vitro culture with or without FGF2. FGF2 maintained the small cell morphology and expedited proliferation kinetics in early ASC passages. After prolonged in vitro expansion, FGF2-treated ASCs exhibited increased cell size, arrested cell proliferation, and increased cellular senescence relative to the control ASCs. We observed an upregulation of FGFR1c and enhanced expression of downstream STAT3 in the initial passages of FGF2-treated ASCs. The application of an FGFR1 or STAT3 inhibitor effectively blocked the enhanced proliferation of ASCs induced by FGF2 treatment. FGFR1c upregulation and enhanced STAT3 expression were lost in the later passages of FGF2-treated ASCs, suggesting that the continuous stimulation of FGF2 becomes ineffective because of the refractory downstream FGFR1 and the STAT3 signaling pathway. In addition, no evidence of tumorigenicity was noted in vitro and in vivo after prolonged expansion of FGF2-cultured ASCs. Our data indicate that ASCs have evolved a STAT3-dependent response to continuous FGF2 stimulation which promotes the initial expansion but limits their long-term proliferation.
Collapse
Affiliation(s)
- Yin Cheng
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Kai‐Hsuan Lin
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Tai‐Horng Young
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Nai‐Chen Cheng
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
- Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
9
|
Vitor LLR, Prado MTO, Lourenço Neto N, Oliveira RC, Sakai VT, Santos CF, Dionísio TJ, Rios D, Cruvinel T, Machado MAAM, Oliveira TM. Does photobiomodulation change the synthesis and secretion of angiogenic proteins by different pulp cell lineages? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111738. [PMID: 31954290 DOI: 10.1016/j.jphotobiol.2019.111738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/02/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
This study aimed to compare the synthesis and secretion of VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, and FGF-2 between pulp fibroblasts from human primary teeth (HPF) and stem cell from human deciduous teeth (SHED) before and after photobiomodulation. HPF were obtained from explant technique and characterized by immunohistochemistry, while SHED were obtained from digestion technique and characterized by flow cytometry. HPF (control group) and SHED were plated, let to adhere, and put on serum starvation to synchronize the cell cycles prior to photobiomodulation. Then, both cell lineages were irradiated with 660-nm laser according to the following groups: 2.5 and 3.7 J/cm2. MTT and crystal violet assays respectively verified viability and proliferation. ELISA Multiplex Assay assessed the following proteins: VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, FGF-2, at 6, 12, and 24 h after photobiomodulation, in supernatant and lysate. Two-way ANOVA/Tukey test evaluated cell viability and proliferation, while angiogenic production and secretion values were analyzed by one-way ANOVA (P < .05). Statistically similar HPF and SHED viability and proliferation patterns occurred before and after photobiomodulation (P > .05). HPF exhibited statistically greater values of all angiogenic proteins than did SHED, at all study periods, except for FGF-2 (supernatant; 12 h); VEGFR1 (lysate; non-irradiated; 12 h); and VEGFR1 (lysate; non-irradiated; 24 h). Photobiomodulation changed the synthesis and secretion of angiogenic proteins by HPF. HPF produced and secreted greater values of all tested angiogenic proteins than did SHED before and after irradiation with both energy densities of 2.5 and 3.7 J/cm2.
Collapse
Affiliation(s)
| | - Mariel Tavares Oliveira Prado
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Vivien Thiemy Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Daniela Rios
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
10
|
Kang W, Liang Q, Du L, Shang L, Wang T, Ge S. Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. J Periodontal Res 2019; 54:424-434. [DOI: 10.1111/jre.12644] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Qianyu Liang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Lingqian Du
- Department of Stomatology; The Second Hospital of Shandong University; Jinan China
| | - Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| |
Collapse
|
11
|
Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther 2018; 9:345. [PMID: 30526676 PMCID: PMC6288970 DOI: 10.1186/s13287-018-1093-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Basic fibroblast growth factor (bFGF) regulates maintenance of stemness and modulation of osteo/odontogenic differentiation and mineralization in stem cells from human exfoliated deciduous teeth (SHEDs). Mineralization in the bones and teeth is in part controlled by pericellular levels of inorganic phosphate (Pi), a component of hydroxyapatite, and inorganic pyrophosphate (PPi), an inhibitor of mineralization. The progressive ankylosis protein (gene ANKH; protein ANKH) and ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1/ENPP1) increase PPi and inhibit mineralization, while tissue-nonspecific alkaline phosphatase (ALPL; TNAP) is a critical pro-mineralization enzyme that hydrolyzes PPi. We hypothesized that regulation by bFGF of mineralization in SHEDs occurs by modulation of Pi/PPi-associated genes. Methods Cells were isolated from human exfoliated deciduous teeth and characterized for mesenchymal stem cell characteristics. Cells were treated with bFGF, and the osteogenic differentiation ability was determined. The mRNA expression was evaluated using real-time polymerase chain reaction. The mineralization was examined using alizarin red S staining. Results Cells isolated from primary teeth expressed mesenchymal stem cell markers, CD44, CD90, and CD105, and were able to differentiate into osteo/odontogenic and adipogenic lineages. Addition of 10 ng/ml bFGF to SHEDs during in vitro osteo/odontogenic differentiation decreased ALPL mRNA expression and ALP enzyme activity, increased ANKH mRNA, and decreased both Pi/PPi ratio and mineral deposition. Effects of bFGF on ALPL and ANKH expression were detected within 24 h. Addition of 20 mM fibroblast growth factor receptor (FGFR) inhibitor SU5402 revealed the necessity of FGFR-mediated signaling, and inclusion of 1 μg/ml cyclohexamide (CHX) implicated the necessity of protein synthesis for effects on ALPL and ANKH. Addition of exogenous 10 μm PPi inhibited mineralization and increased ANKH, collagen type 1a1 (COL1A1), and osteopontin (SPP1) mRNA, while addition of exogenous Pi increased mineralization and osterix (OSX), ANKH, SPP1, and dentin matrix protein 1 (DMP1) mRNA. The effects of PPi and Pi on mineralization could be replicated by short-term 3- and 7-day treatments, suggesting signaling effects in addition to physicochemical regulation of mineral deposition. Conclusion This study reveals for the first time the effects of bFGF on Pi/PPi regulators in SHEDs and implicates these factors in how bFGF directs osteo/odontogenic differentiation and mineralization by these cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-1093-9) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Nowwarote N, Sukarawan W, Kanjana K, Pavasant P, Fournier BPJ, Osathanon T. Interleukin 6 promotes an in vitro mineral deposition by stem cells isolated from human exfoliated deciduous teeth. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180864. [PMID: 30473835 PMCID: PMC6227976 DOI: 10.1098/rsos.180864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/05/2018] [Indexed: 06/05/2023]
Abstract
Interleukin 6 (IL-6) plays various roles including stem cell regulation. The present study investigated the effect of IL-6 on cell proliferation, colony forming unit ability, stem cell marker expression and differentiation ability in stem cells isolated from human exfoliated deciduous teeth (SHEDs). We reported that the isolated cells from dental pulp tissues for deciduous teeth expressed CD44, CD90 and CD105 but not CD45. These cells were able to differentiate into osteoblasts, adipocytes and neuronal-like cells. IL-6 treatment resulted in the significant increase of NANOG, SOX2 and REX1 mRNA expression. However, IL-6 had no effect on cell proliferation and colony forming unit ability. IL-6 did not alter adipogenic and neurogenic differentiation potency. IL-6 supplementation in osteogenic medium led to a significant increase of mineralization. Furthermore, IL-6 upregulated ALP, ANKH and PIT1 mRNA levels. In conclusion, IL-6 participates in the regulation of pluripotent marker expression and is also involved in mineralization process of SHEDs. Hence, IL-6 could be employed as a supplementary substance in culture medium to maintain stemness and to induce osteogenic induction in SHEDs for future regenerative cell therapy.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waleerat Sukarawan
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pediatric Dentistry, Faculty of Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiattipan Kanjana
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Cordeliers Research Center; Paris-Descartes; Pierre and Marie Curie; Paris, F-75006, France; Faculty of Dentistry, Paris Diderot University, Sorbonne Paris Cité, France
| | - Thanaphum Osathanon
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Genomics and Precision Dentistry Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Nowwarote N, Theerapanon T, Osathanon T, Pavasant P, Porntaveetus T, Shotelersuk V. Amelogenesis imperfecta: A novel FAM83H mutation and characteristics of periodontal ligament cells. Oral Dis 2018; 24:1522-1531. [PMID: 29949226 DOI: 10.1111/odi.12926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To delineate orodental features, dental mineral density, genetic aetiology and cellular characteristics associated with amelogenesis imperfecta (AI). MATERIALS AND METHODS Three affected patients in a family were recruited. Whole-exome sequencing was used to identify mutations confirmed by Sanger sequencing. The proband's teeth were subjected for mineral density analysis by microcomputerised tomography and characterisation of periodontal ligament cells (PDLCs). RESULTS The patients presented yellow-brown, pitted and irregular enamel. A novel nonsense mutation, c.1261G>T, p.E421*, in exon 5 of the FAM83H was identified. The mineral density of the enamel was significantly decreased in the proband. The patient's PDLCs (FAM83H cells) exhibited reduced ability of cell proliferation and colony-forming unit compared with controls. The formation of stress fibres was remarkably present. Upon cultured in osteogenic induction medium, FAM83H cells, at day 7 compared to day 3, had a significant reduction of BSP, COL1 and OCN mRNA expression and no significant change in RUNX2. The upregulation of ALP mRNA levels and mineral deposition were comparable between FAM83H and control cells. CONCLUSIONS We identified the novel mutation in FAM83H associated with autosomal dominant hypocalcified AI. The FAM83H cells showed reduced cell proliferation and expression of osteogenic markers, suggesting altered PDLCs in FAM83H-associated AI.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
14
|
Othman A, Mubarak R, Sabry D. Fibroblast growth factor-6 enhances CDK2 and MATK expression in microvesicles derived from human stem cells extracted from exfoliated deciduous teeth. F1000Res 2018; 7:622. [PMID: 32518621 PMCID: PMC7255775 DOI: 10.12688/f1000research.14900.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Stem cells from human exfoliated deciduous teeth (SHEDs) are considered one of the most convenient sources of adult stem cells. This study aimed to examine the effect of fibroblast growth factor 6 (FGF-6) on SHEDs and evaluate
CDK2 and
MATK gene expression in SHED-derived microvesicles (MVs). SHEDs were cultured from deciduous teeth pulp. Methods: SHEDs were divided into two groups: the control group and test groups, with and without FGF-6 supplementation, respectively. After the third passage, SHED proliferation was assessed by MTT assay. MVs were purified and
CDK2 and
MATK gene expression was assessed by real-time polymerase chain reaction. SHEDs were identified by their positivity for CD90 and CD73, and negativity for CD45 and CD34. Results: SHEDs proliferation in the test group was significantly higher than in the control group (P<0.001). mRNA from SHED-derived MVs from the test group exhibited a markedly elevated expression of
CDK2 and
MATK, (P<0.002 and P<0.005, respectively) in comparison with those of the control group. FGF-6 enhanced the proliferation of SHEDs. Proliferation enhancement is favorable for the production of a large number of stem cells, which will then be beneficial for cell-based therapies. Conclusions:CDK2 and
MATK genes in SHED-derived MVs can be used as molecular biomarkers for SHED proliferation.
Collapse
Affiliation(s)
- Ahmed Othman
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| | - Rabab Mubarak
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Porntaveetus T, Nowwarote N, Osathanon T, Theerapanon T, Pavasant P, Boonprakong L, Sanon K, Srisawasdi S, Suphapeetiporn K, Shotelersuk V. Compromised alveolar bone cells in a patient with dentinogenesis imperfecta caused by DSPP mutation. Clin Oral Investig 2018; 23:303-313. [DOI: 10.1007/s00784-018-2437-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
|
16
|
Wang R, Liu W, Du M, Yang C, Li X, Yang P. The differential effect of basic fibroblast growth factor and stromal cell‑derived factor‑1 pretreatment on bone morrow mesenchymal stem cells osteogenic differentiation potency. Mol Med Rep 2017; 17:3715-3721. [PMID: 29359787 PMCID: PMC5802181 DOI: 10.3892/mmr.2017.8316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.
Collapse
Affiliation(s)
- Ruolin Wang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenhua Liu
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mi Du
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuefen Li
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
17
|
Manokawinchoke J, Nattasit P, Thongngam T, Pavasant P, Tompkins KA, Egusa H, Osathanon T. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells. Sci Rep 2017; 7:10124. [PMID: 28860516 PMCID: PMC5578993 DOI: 10.1038/s41598-017-10638-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Praphawi Nattasit
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanutchaporn Thongngam
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Thanaphum Osathanon
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Craniofacial Genetics and Stem Cells Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Nowwarote N, Sukarawan W, Pavasant P, Osathanon T. Basic Fibroblast Growth Factor Regulates REX1 Expression Via IL-6 In Stem Cells Isolated From Human Exfoliated Deciduous Teeth. J Cell Biochem 2016; 118:1480-1488. [PMID: 27883224 DOI: 10.1002/jcb.25807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022]
Abstract
Basic fibroblast growth factor (bFGF) regulates pluripotent marker expression and cellular differentiation in various cell types. However, the mechanism by which bFGF regulates REX1 expression in stem cells, isolated from human exfoliated deciduous teeth (SHEDs) remains unclear. The aim of the present study was to investigate the regulation of REX1 expression by bFGF in SHEDs. SHEDs were isolated and characterized. Their mRNA and protein expression levels were determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. In some experiments, chemical inhibitors were added to the culture medium to impede specific signaling pathways. Cells isolated from human exfoliated deciduous tooth dental pulp tissue expressed mesenchymal stem cell surface markers (CD44, CD73, CD90, and CD105). These cells differentiated into osteogenic and adipogenic lineages, when appropriately induced. Treating SHEDs with bFGF induced REX1 mRNA expression and this effect was attenuated by pretreatment with FGFR or Akt inhibitors. Cycloheximide pretreatment also inhibited the bFGF-induced REX1 expression, implying the involvement of intermediate molecule(s). Further, the addition of an IL-6 neutralizing antibody attenuated the bFGF-induced REX1 expression by SHEDs. In conclusion, bFGF enhanced REX1 expression by SHEDs via the FGFR and Akt signaling pathways. Moreover, IL-6 participated in the bFGF-induced REX1 expression in SHEDs. J. Cell. Biochem. 118: 1480-1488, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleerat Sukarawan
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
19
|
Comparison of stem cell behaviors between indigenous high and low-CD24 percentage expressing cells of stem cells from apical papilla (SCAPs). Tissue Cell 2016; 48:397-406. [DOI: 10.1016/j.tice.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023]
|
20
|
Martinez Saez D, Sasaki RT, Neves ADC, da Silva MCP. Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature. Cells Tissues Organs 2016; 202:269-280. [PMID: 27544531 DOI: 10.1159/000447055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells research has been considered the most advanced sort of medical-scientific research, particularly stem cells from human exfoliated deciduous teeth (SHED), which represent an immature stem cell population. The purpose of this review is to describe the current knowledge concerning SHED from full-text scientific publications from 2003 to 2015, available in English language and based on the keyword and/or abbreviations 'stem cells from human exfoliated deciduous teeth (SHED)', and individually presented as to the properties of SHED, immunomodulatory properties of SHED and stem cell banking. In summary, these cell populations are easily accessible by noninvasive procedures and can be isolated, cultured and expanded in vitro, successfully differentiated in vitro and in vivo into odontoblasts, osteoblasts, chondrocytes, adipocytes and neural cells, and present low immune reactions or rejection following SHED transplantation. Furthermore, SHED are able to remain undifferentiated and stable after long-term cryopreservation. In conclusion, the high proliferative capacity, easy access, multilineage differentiation capacity, noninvasiveness and few ethical concerns make stem cells from human exfoliated deciduous teeth the most valuable source of stem cells for tissue engineering and cell-based regenerative medicine therapies.
Collapse
|
21
|
Metformin and AICAR regulate NANOG expression via the JNK pathway in HepG2 cells independently of AMPK. Tumour Biol 2016; 37:11199-208. [PMID: 26939902 DOI: 10.1007/s13277-016-5007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
NANOG, a marker of stemness, impacts tumor progression and therapeutic resistance in cancer cells. In human hepatocellular carcinoma (HCC), upregulation of NANOG is associated with metastasis and a low survival rate, while its downregulation results in a lower colony formation rate and enhanced chemosensitivity. Metformin, an agent widely used for diabetes treatment, and AICAR, another AMP-activated protein kinase (AMPK) activator, have been reported to inhibit the growth of several types of cancer. Although inhibitory effects of metformin on NANOG in pancreatic cancer cells and of AICAR in mouse embryonic stem cells have been described, the underlying molecular mechanisms remain uncertain in HCC. In this study, we used the HepG2 cell line and found that metformin/AICAR downregulated NANOG expression with decreased cell viability and enhanced chemosensitivity to 5-fluorouracil (5-FU). Moreover, metformin/AICAR inhibited c-Jun N-terminal kinase (JNK) activity, and blockade of either the JNK MAPK pathway or knockdown of JNK1 gene expression reduced NANOG levels. The upregulation of NANOG and phospho-JNK by basic fibroblast growth factor (bFGF) was abrogated by metformin/AICAR. Additionally, although transient upregulation of NANOG within 2 h of treatment with metformin/AICAR was concordant with both JNK and AMPK activation, increased NANOG expression with activation of JNK was also observed following AMPK inhibition with compound C. Taken together, our data suggest that metformin/AICAR regulate NANOG expression via the JNK MAPK pathway in HepG2 cells independently of AMPK, and that this JNK/NANOG signaling pathway may offer new therapeutic strategies for the treatment of HCC.
Collapse
|
22
|
Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy. Stem Cells Int 2016; 2016:3516574. [PMID: 26880954 PMCID: PMC4736971 DOI: 10.1155/2016/3516574] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Although mesenchymal stem cells (MSCs) based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC), dental pulp (DP), and menstrual blood (MB) are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.
Collapse
|
23
|
Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. J Biomed Mater Res A 2015; 104:264-71. [DOI: 10.1002/jbm.a.35558] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 12/27/2022]
Affiliation(s)
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry; Chulalongkorn University; Bangkok 10330 Thailand
- Department of Anatomy, Faculty of Dentistry; Chulalongkorn University; Bangkok Pathumwan 10330 Thailand
| | - Nunthawan Nowwarote
- Mineralized Tissue Research Unit, Faculty of Dentistry; Chulalongkorn University; Bangkok 10330 Thailand
| | - Pitt Supaphol
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok Pathumwan 10330 Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry; Chulalongkorn University; Bangkok 10330 Thailand
- Department of Anatomy, Faculty of Dentistry; Chulalongkorn University; Bangkok Pathumwan 10330 Thailand
| |
Collapse
|
24
|
Potential of 5-azacytidine induction decidual stromal cells from maternal human term placenta towards cardiomyocyte-like cells in serum-free medium. Cell Tissue Bank 2015; 16:477-85. [PMID: 25589450 DOI: 10.1007/s10561-015-9493-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 01/02/2023]
Abstract
Decidual stromal cells (DSCs) from maternal term placenta represent a potential source of cells for the treatment of cardiovascular and graft-versus-host diseases. However, it is not clear whether DSCs could be induced towards cardiomyocyte-like differentiation. We chose the placentas which should bred male new-baby. We isolated DSCs from placenta by tissue adherence. The morphology, immunophenotype, and multi-lineage potential were analyzed. Karyotype analysis (G-band) was performed to determine the source and karyotype stability of DSCs. DSCs were induced by 5-azacytidine. Expression of Myf5, α-cardiac actin, Cardiac troponin T (cTnT) and GAPDH was assessed by PCR, and cTnT expression was also analyzed by immunofluorescence. Karyotype analyses indicated that cells were derived from the maternal matrix. After induction with 5-azacytidine, DSCs expressed the cardiac-specific markers Myf5, myogenin and cTnT, indicating differentiation towards cardiomyocyte-like cells.
Collapse
|
25
|
Nowwarote N, Pavasant P, Osathanon T. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Arch Oral Biol 2014; 60:408-15. [PMID: 25526625 DOI: 10.1016/j.archoralbio.2014.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study aimed to investigate the role of endogenous basic fibroblast growth factor (bFGF) in stem cells isolated from human exfoliated deciduous teeth. METHODS Cells were isolated from dental pulp tissues of human exfoliated deciduous teeth. The expression of stem cell markers was determined using conventional semi-quantitative polymerase chain reaction (PCR) and flow cytometry. The multipotential differentiation ability was also examined. The lentiviral shRNA or fibroblast growth factor receptor (FGFR) inhibitor was employed to inhibit bFGF mRNA expression and signal transduction, respectively. The colony formation ability was determined by low-density cell seeding protocol. The mRNA expression was evaluated using real-time quantitative PCR. The osteogenic differentiation was examined using alkaline phosphatase enzymatic activity assay and alizarin red staining. RESULTS The results demonstrated that the cells isolated from human exfoliated deciduous teeth (SHEDs) exhibited stem cell characteristics, regarding marker expression and multipotential differentiation ability (osteogenic, adipogenic, and neurogenic lineage). The sh-bFGF transduced SHEDs had lower colony forming unit and higher mineralization than those of the control. Similarly, the decrease of colony number and the increase of mineral deposition were noted upon exposing cells to FGFR chemical inhibitor. CONCLUSION These results imply that the endogenous bFGF may participate in the colony formation and osteogenic differentiation ability. In addition, the inhibition of bFGF signalling may be useful to enhance osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thanaphum Osathanon
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|