1
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Kim JC, Lee M, Yeo ISL. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. MATERIALS HORIZONS 2022; 9:1387-1411. [PMID: 35293401 DOI: 10.1039/d1mh01621k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anatomically, the human tooth has structures both embedded within and forming part of the exterior surface of the human body. When a tooth is lost, it is often replaced by a dental implant, to facilitate the chewing of food and for esthetic purposes. For successful substitution of the lost tooth, hard tissue should be integrated into the implant surface. The microtopography and chemistry of the implant surface have been explored with the aim of enhancing osseointegration. Additionally, clinical implant success is dependent on ensuring that a barrier, comprising strong gingival attachment to an abutment, does not allow the infiltration of oral bacteria into the bone-integrated surface. Epithelial and connective tissue cells respond to the abutment surface, depending on its surface characteristics and the materials from which it is made. In particular, the biomechanics of the implant-abutment connection structure (i.e., the biomechanics of the interface between implant and abutment surfaces, and the screw mechanics of the implant-abutment assembly) are critical for both the soft tissue seal and hard tissue integration. Herein, we discuss the clinical importance of these three interfaces: bone-implant, gingiva-abutment, and implant-abutment.
Collapse
Affiliation(s)
- Jeong Chan Kim
- Department of Periodontology, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Min Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongro-Gu, Seoul 03080, Korea.
| |
Collapse
|
3
|
Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. COATINGS 2021. [DOI: 10.3390/coatings11060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the growing aging population of the world, and as a result of the increasing need for dental implants and prostheses, the use of titanium and its alloys as implant materials has spread rapidly. Although titanium and its alloys are considered the best metallic materials for biomedical applications, the need for innovative technologies is necessary due to the sensitivity of medical applications and to eliminate any potentially harmful reactions, enhancing the implant-to-bone integration and preventing infection. In this regard, the implant’s surface as the substrate for any reaction is of crucial importance, and it is accurately addressed in this review paper. For constructing this review paper, an internet search was performed on the web of science with these keywords: surface modification techniques, titanium implant, biomedical applications, surface functionalization, etc. Numerous recent papers about titanium and its alloys were selected and reviewed, except for the section on forthcoming modern implants, in which extended research was performed. This review paper aimed to briefly introduce the necessary surface characteristics for biomedical applications and the numerous surface treatment techniques. Specific emphasis was given to micro/nano-structured topographies, biocompatibility, osteogenesis, and bactericidal effects. Additionally, gradient, multi-scale, and hierarchical surfaces with multifunctional properties were discussed. Finally, special attention was paid to modern implants and forthcoming surface modification strategies such as four-dimensional printing, metamaterials, and metasurfaces. This review paper, including traditional and novel surface modification strategies, will pave the way toward designing the next generation of more efficient implants.
Collapse
|
4
|
Qadir M, Li Y, Biesiekierski A, Wen C. Surface Characterization and Biocompatibility of Hydroxyapatite Coating on Anodized TiO 2 Nanotubes via PVD Magnetron Sputtering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4984-4996. [PMID: 33861930 DOI: 10.1021/acs.langmuir.1c00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HA) coating has received significant attention in the scientific community for the development of implants, and HA coating on titanium oxide (TiO2) nanotubes has shown potential benefits in the improvement of cell proliferation, adhesion, and differentiation. In this study, a HA coating on a TiO2 nanotubular surface was developed to improve the biocompatibility of the titanium (Ti) surface via magnetron sputtering. Scanning electron microscopy (SEM), surface profilometry, and water contact goniometry revealed that HA-coated TiO2 nanotubes influenced the surface roughness (Ra) and hydrophilicity. The XRD and FTIR peaks indicated the presence of crystalline phases of TiO2 (anatase) and HA-coated TiO2 nanotubes after annealing at 500 °C for 120 min. The HA-coated TiO2 nanotubes showed significantly increased Ra and decreased water contact angle (θ) compared to the as-anodized TiO2 nanotubular and bare CP-Ti surfaces. MTS assay using osteoblast-like cells confirmed that the HA-coated TiO2 nanotubular surface provided an enhanced cell attachment and growth when compared to as-anodized TiO2 nanotubular and pure CP-Ti surfaces.
Collapse
Affiliation(s)
- Muhammad Qadir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Arne Biesiekierski
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
5
|
A Radiographic and Clinical Comparison of Immediate vs. Early Loading (4 Weeks) of Implants with a New Thermo-Chemically Treated Surface: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031223. [PMID: 33572988 PMCID: PMC7908367 DOI: 10.3390/ijerph18031223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 01/18/2023]
Abstract
Background: Implant dentistry has evolved over time, resulting in better treatment outcomes for both patients and clinicians. The aim of this trial was to test whether the immediate loading of implants with a platform-switching design influences the marginal bone level, compared to four-week loading, after one year of follow-up. Moreover, a comparison of clinical data regarding implant survival, implant stability, and patient-reported outcome measures (PROMs) was conducted. Methods: Klockner® VEGA® implants with a ContacTi® surface were placed in partially edentulous patients in the posterior areas. Group A received an immediately loaded prosthesis (one week) and Group B received an early-loaded prosthesis (four weeks). All abutments were placed at the time of surgery. Radiographic and clinical data were recorded. Results: Twenty-one patients were treated (35 implants). No implants were lost during the study. The final marginal bone level did not show differences between groups. The bone loss at 12 months at the implant level was 0.00 mm for both groups (median). The final implant quotient stability (ISQ) values did not differ between groups (median 73 and 70.25), nor did the other clinical parameters or PROMs. Conclusions: The results suggest that neither of the loading protocols with the implants used influenced the marginal bone level—not the osseointegration rate, clinical conditions, or PROMs.
Collapse
|
6
|
Hayakawa T, Sato M. Molecular precursor method for thin carbonate-containing apatite coating on dental implants. Dent Mater J 2020; 39:181-186. [PMID: 32037383 DOI: 10.4012/dmj.2019-337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The molecular precursor method is an easy and simple method for coating thin carbonate-containing apatite (CA) films onto titanium surfaces. A molecular precursor solution containing ethanol, calcium-EDTA complex, and phosphate salt was dropped onto a titanium surface and then heated at 600°C for 2 h. An adherent thin CA coating was achieved. Animal implantation experiments showed that CA-coated implants had significantly higher bone-to-implant values than non-coated implants (p<0.05). The molecular precursor method was also used to coat three-dimensional titanium webs (TWs). Thin CA films could be coated inside the center area, as well as the surface of the TW, with excellent bone formation inside the CA-coated TW. Furthermore, the molecular precursor method was used to coat partially stabilized zirconia with CA. Better bone response was observed for CA-coated zirconia. From this, it is concluded that the molecular precursor method is useful for producing thin CA coatings on implant materials.
Collapse
Affiliation(s)
- Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | - Mitsunobu Sato
- Department of Applied Physics, School of Advanced Engineering, Kogakuin University
| |
Collapse
|
7
|
Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. MATERIALS 2019; 13:ma13010089. [PMID: 31878016 PMCID: PMC6982017 DOI: 10.3390/ma13010089] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
This review paper describes several recent modification methods for biocompatible titanium dental implant surfaces. The micro-roughened surfaces reviewed in the literature are sandblasted, large-grit, acid-etched, and anodically oxidized. These globally-used surfaces have been clinically investigated, showing survival rates higher than 95%. In the past, dental clinicians believed that eukaryotic cells for osteogenesis did not recognize the changes of the nanostructures of dental implant surfaces. However, research findings have recently shown that osteogenic cells respond to chemical and morphological changes at a nanoscale on the surfaces, including titanium dioxide nanotube arrangements, functional peptide coatings, fluoride treatments, calcium–phosphorus applications, and ultraviolet photofunctionalization. Some of the nano-level modifications have not yet been clinically evaluated. However, these modified dental implant surfaces at the nanoscale have shown excellent in vitro and in vivo results, and thus promising potential future clinical use.
Collapse
|
8
|
Asensio G, Vázquez-Lasa B, Rojo L. Achievements in the Topographic Design of Commercial Titanium Dental Implants: Towards Anti-Peri-Implantitis Surfaces. J Clin Med 2019; 8:E1982. [PMID: 31739615 PMCID: PMC6912779 DOI: 10.3390/jcm8111982] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Titanium and its alloys constitute the gold standard materials for oral implantology in which their performance is mainly conditioned by their osseointegration capacity in the host's bone. We aim to provide an overview of the advances in surface modification of commercial dental implants analyzing and comparing the osseointegration capacity and the clinical outcome exhibited by different surfaces. Besides, the development of peri-implantitis constitutes one of the most common causes of implant loss due to bacteria colonization. Thus, a synergic response from industry and materials scientists is needed to provide reliable technical and commercial solutions to this issue. The second part of the review focuses on an update of the recent findings toward the development of new materials with osteogenic and antibacterial capacity that are most likely to be marketed, and their correlation with implant geometry, biomechanical behavior, biomaterials features, and clinical outcomes.
Collapse
Affiliation(s)
- Gerardo Asensio
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
9
|
Sengupta T, Muthu P. Evolution of BioMaterials for Dental Implants and Futuristic Developments. 2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) 2019. [DOI: 10.1109/bibe.2019.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
10
|
Surmenev RA, Surmeneva MA. A critical review of decades of research on calcium phosphate–based coatings: How far are we from their widespread clinical application? CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Dorozhkin SV. Calcium orthophosphates as a dental regenerative material. ADVANCED DENTAL BIOMATERIALS 2019:377-452. [DOI: 10.1016/b978-0-08-102476-8.00016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
A New Highly Hydrophilic Electrochemical Implant Titanium Surface: A Histological and Biomechanical In Vivo Study. IMPLANT DENT 2018; 26:429-437. [PMID: 28492424 DOI: 10.1097/id.0000000000000605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim was to compare the osseointegration degree and secondary implant stability between implants with different surface treatments. MATERIALS AND METHODS A novel electrochemical treatment was applied to modify the sandblasted and acid-etched surface (SLA) to obtain the new hydrophilic Feeling (FEL) surface presenting a highly soluble and homogenous film made of calcium and phosphorus nanocrystals. Twenty 3.8 × 10-mm dynamix implants (Cortex) were inserted in sheep iliac crests. Sheep were killed after 2 months. Bone-to-implant contact percentage (%BIC) and biomechanical parameters, such as implant stability quotient (ISQ) and value of actual micromotion (VAM), were evaluated for each implants. RESULTS No implant failures were observed. Implants of test group showed %BIC value 30% higher in respect with control group (P = 0.001). No statistical differences were detected between the 2 groups in VAM and ISQ values. CONCLUSION Both surface treatments were highly osteoconductive because they were able to significantly increase the bone density onto implant surface in respect with that in which they were inserted (D4 bone density). The hydrophilic FEL surface demonstrated an increase of about 216% in BIC in respect with host bone density and an additional 30% more in respect with SLA surface. Faster osseointegration process is desirable in case of early implant loading protocol.
Collapse
|
13
|
Mangano F, Raspanti M, Maghaireh H, Mangano C. Scanning Electron Microscope (SEM) Evaluation of the Interface between a Nanostructured Calcium-Incorporated Dental Implant Surface and the Human Bone. MATERIALS 2017; 10:ma10121438. [PMID: 29258208 PMCID: PMC5744373 DOI: 10.3390/ma10121438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
Abstract
Purpose. The aim of this scanning electron microscope (SEM) study was to investigate the interface between the bone and a novel nanostructured calcium-incorporated dental implant surface in humans. Methods. A dental implant (Anyridge®, Megagen Implant Co., Gyeongbuk, South Korea) with a nanostructured calcium-incorporated surface (Xpeed®, Megagen Implant Co., Gyeongbuk, South Korea), which had been placed a month earlier in a fully healed site of the posterior maxilla (#14) of a 48-year-old female patient, and which had been subjected to immediate functional loading, was removed after a traumatic injury. Despite the violent trauma that caused mobilization of the fixture, its surface appeared to be covered by a firmly attached, intact tissue; therefore, it was subjected to SEM examination. The implant surface of an unused nanostructured calcium-incorporated implant was also observed under SEM, as control. Results. The surface of the unused implant showed a highly-structured texture, carved by irregular, multi-scale hollows reminiscent of a fractal structure. It appeared perfectly clean and devoid of any contamination. The human specimen showed trabecular bone firmly anchored to the implant surface, bridging the screw threads and filling the spaces among them. Conclusions. Within the limits of this human histological report, the sample analyzed showed that the nanostructured calcium-incorporated surface was covered by new bone, one month after placement in the posterior maxilla, under an immediate functional loading protocol.
Collapse
Affiliation(s)
- Francesco Mangano
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy.
| | | | - Carlo Mangano
- Department of Dental Sciences, University Vita Salute S. Raffaele, Milan 20132, Italy.
| |
Collapse
|
14
|
Yagi R, Mochizuki C, Sato M, Toyama T, Hirota M, Hayakawa T, Ohkubo C. Characterization and Bone Response of Carbonate-Containing Apatite-Coated Titanium Implants Using an Aqueous Spray Coating. MATERIALS 2017; 10:ma10121416. [PMID: 29232914 PMCID: PMC5744351 DOI: 10.3390/ma10121416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
Abstract
We performed thin carbonate-containing apatite (CA) coating on titanium (Ti) by an aqueous spray coating (ASC) method that consisted of a Ca-CO3-PO4 complex. Two different CA coatings were produced by two different spray amounts and were heat-treated after spraying. We evaluated three-dimensional structures, adhesiveness to Ti, and durability of the CA film. In addition, we performed immersion experiments in simulated body fluid (SBF), and bone responses were evaluated after implantation into a femoral bone defect in rats. The bonding ability of ASC-coated implant into the bone was examined by push-in tests. Unique network structures with small particles were identified on CA coatings. Although heat treatment produced no significant difference in surface morphology, scratch tests revealed that heat treatment improved the adhesion of CA coatings to Ti. Crystal formation progressed on CA-coated specimens, and the sample placement direction influenced crystal formation and growth in SBF immersion. Animal implantation experiments revealed significantly greater bone-to-implant contact ratio and bone mass in both cortical and bone marrow, respectively, four weeks after implantation. Push-in tests suggested that the bonding of the CA coating to Ti is clinically acceptable. Therefore, we conclude that CA coating to Ti by the ASC method would be possible for clinical applications, including dentistry.
Collapse
Affiliation(s)
- Ryo Yagi
- Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan.
| | - Chihiro Mochizuki
- Division of Liberal Arts, Center for Promotion of High Education, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 192-0015, Japan.
| | - Mitsunobu Sato
- Department of Applied Physics, School of Advanced Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 192-0015, Japan.
| | - Takeshi Toyama
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Surugadai, Kanda, Chiyoda, Tokyo 101-8308, Japan.
| | - Masatsugu Hirota
- Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan.
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan.
| | - Chikahiro Ohkubo
- Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan.
| |
Collapse
|
15
|
Fernandes KR, Zhang Y, Magri AMP, Renno ACM, van den Beucken JJJP. Biomaterial Property Effects on Platelets and Macrophages: An in Vitro Study. ACS Biomater Sci Eng 2017; 3:3318-3327. [PMID: 29250594 PMCID: PMC5727470 DOI: 10.1021/acsbiomaterials.7b00679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
Abstract
![]()
The
purpose of this study was to evaluate the effects of surface
properties of bone implants coated with hydroxyapatite (HA) and β-tricalcium
phosphate (β-TCP) on platelets and macrophages upon implant
installation and compare them to grit-blasted Ti and Thermanox used
as a control. Surface properties were characterized using scanning
electron microscopy, profilometry, crystallography, Fourier transform
infrared spectroscopy, and coating stability. For platelets, platelet
adherence and morphology were assessed. For macrophages, morphology,
proliferation, and polarization were evaluated. Surface characterization
showed similar roughness of ∼2.5 μm for grit-blasted
Ti discs, both with and without coating. Coating stability assessment
showed substantial dissolution of HA and β-TCP coatings. Platelet
adherence was significantly higher for grit-blasted Ti, Ti-HA, and
Ti-β-TCP coatings compared to that of cell culture control Thermanox.
Macrophage cultures revealed a decreased proliferation on both HA
and β-TCP coated discs compared to both Thermanox and grit-blasted
Ti. In contrast, secretion of pro-inflammatory cytokine TNF-α
and anti-inflammatory cytokine TGF-β were marginal for grit-blasted
Ti and Thermanox, while a coating-dependent increased secretion of
pro- and anti-inflammatory cytokines was observed for HA and β-TCP
coatings. The results demonstrated a significantly upregulated pro-inflammatory
and anti-inflammatory cytokine secretion and marker gene expression
of macrophages on HA and β-TCP coatings. Furthermore, HA induced
an earlier M1 macrophage polarization but more M2 phenotype potency
than β-TCP. In conclusion, our data showed that material surface
affects the behaviors of first cell types attached to implants. Due
to the demonstrated crucial roles of platelets and macrophages in
bone healing and implant integration, this information will greatly
aid the design of metallic implants for a higher rate of success in
patients.
Collapse
Affiliation(s)
- Kelly R Fernandes
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.,Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015-021, Brazil
| | - Yang Zhang
- Department of Biomaterials, Radboudumc, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | - Angela M P Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015-021, Brazil
| | - Ana C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015-021, Brazil
| | | |
Collapse
|
16
|
Behavior of Human Osteoblast Cells Cultured on Titanium Discs in Relation to Surface Roughness and Presence of Melatonin. Int J Mol Sci 2017; 18:ijms18040823. [PMID: 28406458 PMCID: PMC5412407 DOI: 10.3390/ijms18040823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to observe the behavior of osteoblast cells cultured in vitro on titanium discs in relation to disc surface roughness and the addition of melatonin to the culture medium. MG63 osteoblast cells were cultivated on 120 Grade 5 Ti divided into three groups: Group E, treated with dual acid etch; Group EP, treated with dual acid etch and calcium phosphate; and Group M, machined. Surface roughness was examined under a laser scanning confocal microscope (CLSM) and scanning electron microscopy (SEM). The proliferation and morphology of cells were determined under fluorescence microscopy and SEM. Messenger ribonucleic acid (mRNA) of different genes related to osteoblastic differentiation was quantified by means of real-time quantitative polymerase chain reaction (RT-PCR) assay. The greatest surface roughness was found in Group EP (Ra 0.354 µm), followed by Group E (Ra 0.266 µm), and Group M (Ra 0.131 µm), with statistically significant differences between the groups (p < 0.001). In the presence of melatonin a trend to a higher cell proliferation was observed in all groups although significant differences were only found in Group M (p = 0.0079). Among the genes studied, a significant increase in phosphate-regulating neutral endopeptidase, X-linked (PHEX) expression was observed in cells cultured on EP discs. The addition of melatonin increased osteoblast cell proliferation and differentiation, and may favor the osseointegration of dental implants.
Collapse
|