1
|
Wan K, Nie T, Ouyang W, Xiong Y, Bian J, Huang Y, Ling L, Huang Z, Zhu X. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Brief Funct Genomics 2025; 24:elae020. [PMID: 38841796 PMCID: PMC11735739 DOI: 10.1093/bfgp/elae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tiantian Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yunjing Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jing Bian
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ying Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
2
|
Xiao B, Wu S, Tian Y, Huang W, Chen G, Luo D, Cai Y, Chen M, Zhang Y, Liu C, Zhao J, Li L. Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase. Cell Biol Toxicol 2024; 41:17. [PMID: 39725720 PMCID: PMC11671434 DOI: 10.1007/s10565-024-09962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation. NAT10 stands out as the sole identified modification enzyme responsible for RNA acetylation. There remains some ambiguity regarding the similarities and differences in NAT10's actions on protein and RNA substrates. While NAT10 involves acetylation modification in both cases, which is a crucial molecular mechanism in epigenetic regulation, there are significant disparities in the catalytic mechanisms, regulatory pathways, and biological processes involved. Therefore, this review aims to offer a comprehensive overview of NAT10 as a protein and RNA acetyltransferase, covering its basic catalytic features, biological functions, and roles in related diseases.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
- Department of Laboratory Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, Guangdong, China.
| | - Shunhong Wu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yan Tian
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weikai Huang
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Guangzhan Chen
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Dongxin Luo
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yishen Cai
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Ming Chen
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yuqian Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chuyan Liu
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Junxiu Zhao
- College of Public Health, Dali University, Dali, 671003, Yunnan, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
3
|
Feng Y, Zhang T, Chang Y. Compression force promotes the osteogenic differentiation of periodontal ligament stem cells by regulating NAT10-mediated ac4C modification of BMP2. J Orthop Surg Res 2024; 19:861. [PMID: 39702283 DOI: 10.1186/s13018-024-05302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Orthodontic treatment applies specific corrective forces to teeth, transmitting stress to periodontal tissue, thereby regulating the growth and development of periodontal ligament stem cells (PDLSCs). Recently, N-acetyltransferase 10 (NAT10) mediated N4-acetylcytidine (ac4C) modification is demonstrated to play a key role in the osteogenic differentiation of stem cells. Therefore, this study aimed explore the effects of Orthodontic treatment on the NAT10 mediated ac4C modification and osteogenic differentiation of PDLSCs. METHODS Compressive force was used to treat PDLSCs to simulate orthodontic force treatment. The ALP and ARS staining was performed to analyze the osteogenic differentiation of PDLSCs. Besides, ac4C dot blot and ac4C-RIP assays were performed to detect the global ac4C levels and BMP2 ac4C levels. The relationship between NAT10 and BMP2 was confirmed by RIP assay and immunofluorescence staining. The mRNA and protein levels of RUNX2, Oxterix and BMP2 were detected by RT-qPCR and western blot assays. RESULTS Compressive force treatment promoted the osteogenic differentiation of PDLSCs, and enhanced the global ac4C levels and NAT10 levels in PDLSCs. NAT10 overexpression further promoted the osteogenic differentiation of compressive force treated PDLSCs. Besides, NAT10 overexpression increased ac4C levels of BMP2 and enhanced the mRNA stability of BMP2. Remodelin treatment significantly decreased the ac4C and mRNA levels of BMP2. Furthermore, BMP2 silencing reversed the role of NAT10 in the compressive force treated PDLSCs. CONCLUSION This study demonstrated that compressive force promotes cell viability and osteogenic differentiation of PDLSCs by regulating BMP2 levels mediated by NAT10. NAT10 mediated ac4C levels of BMP2 is the key signaling axis of orthodontic stress in promoting cell growth and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Feng
- Department of Oral Orthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou City, 221000, Jiangsu, China.
| | - Ting Zhang
- Department of Oral Orthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou City, 221000, Jiangsu, China
| | - Yue Chang
- Department of Oral Orthodontics, The First Affiliated Hospital, Zhengzhou University, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
Gu Z, Zou L, Pan X, Yu Y, Liu Y, Zhang Z, Liu J, Mao S, Zhang J, Guo C, Li W, Geng J, Zhang W, Yao X, Shen B. The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression. MedComm (Beijing) 2024; 5:e70026. [PMID: 39640362 PMCID: PMC11617596 DOI: 10.1002/mco2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuoran Gu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Libin Zou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xinjian Pan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yang Yu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yongqiang Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Zhijin Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Ji Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Shiyu Mao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Junfeng Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wei Li
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Jiang Geng
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wentao Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Bing Shen
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongi UniversityShanahaiChina
| |
Collapse
|
5
|
Liao H, Ma H, Meng H, Kang N, Wang L. Ropinirole suppresses LPS-induced periodontal inflammation by inhibiting the NAT10 in an ac4C-dependent manner. BMC Oral Health 2024; 24:510. [PMID: 38689229 PMCID: PMC11059654 DOI: 10.1186/s12903-024-04250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1β, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.
Collapse
Affiliation(s)
- Haiqing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huabing Ma
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hongying Meng
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Kang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Lufei Wang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [PMID: 38532349 DOI: 10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Wenwei Yu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Lili Zhou
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Danhua Ling
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
- Department of General Dentistry, the Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, Hangzhou, Zhejiang, 310052, China
| | - Yangbo Xu
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Fuming He
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
7
|
Gu Z, Qiu C, Chen L, Wang X. Injectable thermosensitive hydrogel loading erythropoietin and FK506 alleviates gingival inflammation and promotes periodontal tissue regeneration. Front Bioeng Biotechnol 2024; 11:1323554. [PMID: 38239915 PMCID: PMC10794575 DOI: 10.3389/fbioe.2023.1323554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Periodontitis is a chronic multifactorial inflammatory disease associated with dysbiotic plaque biofilms and characterized by progressive destruction of the tooth-supporting apparatus. Therefore, there is significant potential in the discovery of drugs that inhibit periodontal inflammatory responses and promote periodontal regeneration. Methods: In this study, we generated a periodontitis rat model to detect the effects of chitosan/β-sodium glycerophosphate (β-GP)/glycolic acid (GA) hydrogel carried Erythropoietin and FK506 (EPO-FK506-CS/β-GP/GA). A total of forty-eight male Wistar rats were used to establish the periodontitis model. Drug injection was administered every 3 days for a total of five times over a 2-week period. After a period of 2 weeks following implantation, the rats underwent anesthesia, and a section of their maxillae encompassing the maxillary first and second molars, along with the alveolar bone, was obtained. micro-CT scanning, histopathology, immunohistochemistry and reverse transcription-quantitative PCR (RT-qPCR) assays were performed. Meanwhile, ELISA assay was performed to detect the levels of inflammatory mediators (TNF-α, IL-6 and IL-1β). Results: The synthesis and characterization of EPO-FK506-CS/β-GP/GA revealed that the hydrogel has stability and sustained release of drugs. The application of FK506+EPO was found to significantly enhance new bone formation in the defect area, as evidenced by the results of HE staining. Additionally, the use of FK506+EPO in the treated groups led to a notable increase in the density of alveolar bone, as observed through micro-CT analysis, when compared to the Model group. EPO-FK506-CS/β-GP/GA hydrogel exhibited notable efficacy in modulating inflammatory mediators (TNF-α, IL-6 and IL-1β). Furthermore, the osteoinductive properties of the EPO-FK506-CS/β-GP/GA hydrogel were extensive, as evidenced by a significant upregulation in the expression of key markers (Collagen I, Runx2, OPN, and OCN) associated with osteoblastic differentiation. Conclusion: Taken together, EPO-FK506-CS/β-GP/GA hydrogel alleviates gingival inflammation and promotes periodontal tissue regeneration in the periodontitis.
Collapse
Affiliation(s)
- Zhongyi Gu
- Department of Periodontology, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Caiqing Qiu
- Department of Periodontology, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Ling Chen
- Department of Yantai University Branch, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoli Wang
- Department of Yantai University Branch, The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
8
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
9
|
Jia J, Cao X, Wei Z. DLC-ac4C: A Prediction Model for N4-acetylcytidine Sites in Human mRNA Based on DenseNet and Bidirectional LSTM Methods. Curr Genomics 2023; 24:171-186. [PMID: 38178985 PMCID: PMC10761336 DOI: 10.2174/0113892029270191231013111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction N4 acetylcytidine (ac4C) is a highly conserved nucleoside modification that is essential for the regulation of immune functions in organisms. Currently, the identification of ac4C is primarily achieved using biological methods, which can be time-consuming and labor-intensive. In contrast, accurate identification of ac4C by computational methods has become a more effective method for classification and prediction. Aim To the best of our knowledge, although there are several computational methods for ac4C locus prediction, the performance of the models they constructed is poor, and the network structure they used is relatively simple and suffers from the disadvantage of network degradation. This study aims to improve these limitations by proposing a predictive model based on integrated deep learning to better help identify ac4C sites. Methods In this study, we propose a new integrated deep learning prediction framework, DLC-ac4C. First, we encode RNA sequences based on three feature encoding schemes, namely C2 encoding, nucleotide chemical property (NCP) encoding, and nucleotide density (ND) encoding. Second, one-dimensional convolutional layers and densely connected convolutional networks (DenseNet) are used to learn local features, and bi-directional long short-term memory networks (Bi-LSTM) are used to learn global features. Third, a channel attention mechanism is introduced to determine the importance of sequence characteristics. Finally, a homomorphic integration strategy is used to limit the generalization error of the model, which further improves the performance of the model. Results The DLC-ac4C model performed well in terms of sensitivity (Sn), specificity (Sp), accuracy (Acc), Mathews correlation coefficient (MCC), and area under the curve (AUC) for the independent test data with 86.23%, 79.71%, 82.97%, 66.08%, and 90.42%, respectively, which was significantly better than the prediction accuracy of the existing methods. Conclusion Our model not only combines DenseNet and Bi-LSTM, but also uses the channel attention mechanism to better capture hidden information features from a sequence perspective, and can identify ac4C sites more effectively.
Collapse
Affiliation(s)
- Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xiaojing Cao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhangying Wei
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| |
Collapse
|
10
|
Yang Z, Wilkinson E, Cui YH, Li H, He YY. NAT10 regulates the repair of UVB-induced DNA damage and tumorigenicity. Toxicol Appl Pharmacol 2023; 477:116688. [PMID: 37716414 PMCID: PMC10591715 DOI: 10.1016/j.taap.2023.116688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Chemical modifications in messenger RNA (mRNA) regulate gene expression and play critical roles in stress responses and diseases. Recently we have shown that N6-methyladenosine (m6A), the most abundant mRNA modification, promotes the repair of UVB-induced DNA damage by regulating global genome nucleotide excision repair (GG-NER). However, the roles of other mRNA modifications in the UVB-induced damage response remain understudied. N4-acetylcytidine (ac4C) is deposited in mRNA by the RNA-binding acetyltransferase NAT10. This NAT10-mediated ac4C in mRNA has been reported to increase both mRNA stability and translation. However, the role of ac4C and NAT10 in the UVB-induced DNA damage response remains poorly understood. Here we show that NAT10 plays a critical role in the repair of UVB-induced DNA damage lesions through regulating the expression of the key GG-NER gene DDB2. We found that knockdown of NAT10 enhanced the repair of UVB-induced DNA damage lesions by promoting the mRNA stability of DDB2. Our findings are in contrast to the previously reported role of NAT10-mediated ac4C deposition in promoting mRNA stability and may represent a novel mechanism for ac4C in the UVB damage response. Furthermore, NAT10 knockdown in skin cancer cells decreased skin cancer cell proliferation in vitro and tumorigenicity in vivo. Chronic UVB irradiation increases NAT10 protein levels in mouse skin. Taken together, our findings demonstrate a novel role for NAT10 in the repair of UVB-induced DNA damage products by decreasing the mRNA stability of DDB2 and suggest that NAT10 is a potential novel target for preventing and treating skin cancer.
Collapse
Affiliation(s)
- Zizhao Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Haixia Li
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Kong L, Mao Z, He S, Li K, Zhou L, Zhang X, Huang P. PM 2.5 induces alterations in gene expression profile of platelet-derived extracellular vesicles and mediates cardiovascular injury in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115341. [PMID: 37573648 DOI: 10.1016/j.ecoenv.2023.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Platelet-derived extracellular vesicles (P-EVs), as the most abundant vesicles in blood, have been proven to play cardinal roles in cardiovascular injury. RNAs (especially miRNAs) carried by P-EVs can be transferred to the receptor, which plays a critical role in regulating vascular endothelial function. PM2.5 is one of the most well-known risk factors that cause cardiovascular disease. Therefore, the objective of the current study was to explore whether exposure to PM2.5 would alter the gene expression profile of P-EVs, and to further elucidate the role of RNAs (especially miRNAs) carried by P-EVs in cardiovascular injury induced by PM2.5 exposure. P-EVs were isolated from the platelet-rich plasma which was exposed and unexposed to PM2.5, and the differentially expressed target genes were evaluated using whole-transcriptome gene sequencing. Rats were treated with P-EVs under different exposure conditions (a protein concentration of 50 µg/mL) and an equal volume of normal saline. The pathological damage of the thoracic aorta and cardiac tissue was evaluated and the coagulation function of the rats was detected. The differentially expressed genes were shown to be mainly concentrated in inflammation, angiogenesis, and apoptosis-related pathways. Moreover, P-EVs extracted from PM2.5-exposed plasma had the potential to trigger an inflammatory response, impair vascular endothelial function, disrupt the normal coagulation process, and promote a prothrombotic state. Our study indicated that PM2.5 induces cardiovascular injury in rats by interfering with the gene expression of P-EVs. It will provide new targets for studying the mechanism involved in PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Ling Kong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Institute for Brain Disorders, National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
| | - Zhen Mao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shiyu He
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kexin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihong Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaodan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Peili Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges. Biochem Pharmacol 2023; 213:115628. [PMID: 37247745 DOI: 10.1016/j.bcp.2023.115628] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The oldest known highly conserved modification of RNA, N4-acetylcytidine, is widely distributed from archaea to eukaryotes and acts as a posttranscriptional chemical modification of RNA, contributing to the correct reading of specific nucleotide sequences during translation, stabilising mRNA and improving transcription efficiency. Yeast Kre33 and human NAT10, the only known authors of ac4C, modify tRNA with the help of the Tan1/THUMPD1 adapter to stabilise its structure. Currently, the mRNA for N4-acetylcytidine (ac4C), catalysed by NAT10 (N-acetyltransferase 10), has been implicated in a variety of human diseases, particularly cancer. This article reviews advances in the study of ac4C modification of RNA and the ac4C-related gene NAT10 in normal physiological cell development, cancer, premature disease and viral infection and discusses its therapeutic promise and future research challenges.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingsong Cao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang 421001, China
| | - Cong Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|