1
|
Menolli N, Sánchez-Ramírez S, Sánchez-García M, Wang C, Patev S, Ishikawa NK, Mata JL, Lenz AR, Vargas-Isla R, Liderman L, Lamb M, Nuhn M, Hughes KW, Xiao Y, Hibbett DS. Global phylogeny of the Shiitake mushroom and related Lentinula species uncovers novel diversity and suggests an origin in the Neotropics. Mol Phylogenet Evol 2022; 173:107494. [PMID: 35490968 DOI: 10.1016/j.ympev.2022.107494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/18/2023]
Abstract
Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distributions. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.
Collapse
Affiliation(s)
- Nelson Menolli
- IFungiLab, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Departamento de Ciências da Natureza e Matemática (DCM) / Subárea de Biologia (SAB), Rua Pedro Vicente 625, São Paulo, SP 01109-010, Brazil.
| | - Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Marisol Sánchez-García
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75005, Sweden
| | - Chaoqun Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sean Patev
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Noemia Kazue Ishikawa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Juan L Mata
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alexandre Rafael Lenz
- Departamento de Ciências Exatas e da Terra, Colegiado de Sistemas de Informação, Campus I, Universidade do Estado da Bahia (UNEB), Salvador, BA, Brazil
| | - Ruby Vargas-Isla
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Lauren Liderman
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Meriel Lamb
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Mitchell Nuhn
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Karen W Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - David S Hibbett
- Biology Department, Clark University, Worcester, MA 01610, USA
| |
Collapse
|