1
|
Koike Y, Ohira S, Kihara S, Anetai Y, Takegawa H, Nakamura S, Miyazaki M, Konishi K, Tanigawa N. Synthetic Low-Energy Monochromatic Image Generation in Single-Energy Computed Tomography System Using a Transformer-Based Deep Learning Model. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2688-2697. [PMID: 38637424 PMCID: PMC11522201 DOI: 10.1007/s10278-024-01111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
While dual-energy computed tomography (DECT) technology introduces energy-specific information in clinical practice, single-energy CT (SECT) is predominantly used, limiting the number of people who can benefit from DECT. This study proposed a novel method to generate synthetic low-energy virtual monochromatic images at 50 keV (sVMI50keV) from SECT images using a transformer-based deep learning model, SwinUNETR. Data were obtained from 85 patients who underwent head and neck radiotherapy. Among these, the model was built using data from 70 patients for whom only DECT images were available. The remaining 15 patients, for whom both DECT and SECT images were available, were used to predict from the actual SECT images. We used the SwinUNETR model to generate sVMI50keV. The image quality was evaluated, and the results were compared with those of the convolutional neural network-based model, Unet. The mean absolute errors from the true VMI50keV were 36.5 ± 4.9 and 33.0 ± 4.4 Hounsfield units for Unet and SwinUNETR, respectively. SwinUNETR yielded smaller errors in tissue attenuation values compared with those of Unet. The contrast changes in sVMI50keV generated by SwinUNETR from SECT were closer to those of DECT-derived VMI50keV than the contrast changes in Unet-generated sVMI50keV. This study demonstrated the potential of transformer-based models for generating synthetic low-energy VMIs from SECT images, thereby improving the image quality of head and neck cancer imaging. It provides a practical and feasible solution to obtain low-energy VMIs from SECT data that can benefit a large number of facilities and patients without access to DECT technology.
Collapse
Affiliation(s)
- Yuhei Koike
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Shingo Ohira
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
| | - Sayaka Kihara
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
| | - Yusuke Anetai
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Hideki Takegawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
2
|
Koike Y, Ohira S, Yamamoto Y, Miyazaki M, Konishi K, Nakamura S, Tanigawa N. Artificial intelligence-based image-domain material decomposition in single-energy computed tomography for head and neck cancer. Int J Comput Assist Radiol Surg 2024; 19:541-551. [PMID: 38219257 DOI: 10.1007/s11548-023-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
PURPOSE While dual-energy computed tomography (DECT) images provide clinically useful information than single-energy CT (SECT), SECT remains the most widely used CT system globally, and only a few institutions can use DECT. This study aimed to establish an artificial intelligence (AI)-based image-domain material decomposition technique using multiple keV-output learning of virtual monochromatic images (VMIs) to create DECT-equivalent images from SECT images. METHODS This study involved 82 patients with head and neck cancer. Of these, the AI model was built with data from the 67 patients with only DECT scans, while 15 patients with both SECT and DECT scans were used for SECT testing. Our AI model generated VMI50keV and VMI100keV from VMI70keV equivalent to 120-kVp SECT images. We introduced a loss function for material density images (MDIs) in addition to the loss for VMIs. For comparison, we trained the same model with the loss for VMIs only. DECT-equivalent images were generated from SECT images and compared with the true DECT images. RESULTS The prediction time was 5.4 s per patient. The proposed method with the MDI loss function quantitatively provided more accurate DECT-equivalent images than the model trained with the loss for VMIs only. Using real 120-kVp SECT images, the trained model produced precise DECT images of excellent quality. CONCLUSION In this study, we developed an AI-based material decomposition approach for head and neck cancer patients by introducing the loss function for MDIs via multiple keV-output learning. Our results suggest the feasibility of AI-based image-domain material decomposition in a conventional SECT system without a DECT scanner.
Collapse
Affiliation(s)
- Yuhei Koike
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
- Division of Radiation Oncology, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 537-8567, Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
- Division of Radiation Oncology, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
3
|
Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med 2018; 98:8-15. [PMID: 29758455 DOI: 10.1016/j.compbiomed.2018.05.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 10/17/2022]
Abstract
Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists.
Collapse
Affiliation(s)
- Naofumi Tomita
- Biomedical Data Science Department, Dartmouth College, Hanover, NH 03755, USA
| | - Yvonne Y Cheung
- Radiology Department, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Saeed Hassanpour
- Biomedical Data Science Department, Dartmouth College, Hanover, NH 03755, USA; Epidemiology Department, Dartmouth College, Hanover, NH 03755, USA; Computer Science Department, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|