1
|
Wang W, Wang Y. Deep Learning-Based Modified YOLACT Algorithm on Magnetic Resonance Imaging Images for Screening Common and Difficult Samples of Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13091582. [PMID: 37174975 PMCID: PMC10177566 DOI: 10.3390/diagnostics13091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023] Open
Abstract
Computer-aided methods have been extensively applied for diagnosing breast lesions with magnetic resonance imaging (MRI), but fully-automatic diagnosis using deep learning is rarely documented. Deep-learning-technology-based artificial intelligence (AI) was used in this work to classify and diagnose breast cancer based on MRI images. Breast cancer MRI images from the Rider Breast MRI public dataset were converted into processable joint photographic expert group (JPG) format images. The location and shape of the lesion area were labeled using the Labelme software. A difficult-sample mining mechanism was introduced to improve the performance of the YOLACT algorithm model as a modified YOLACT algorithm model. Diagnostic efficacy was compared with the Mask R-CNN algorithm model. The deep learning framework was based on PyTorch version 1.0. Four thousand and four hundred labeled data with corresponding lesions were labeled as normal samples, and 1600 images with blurred lesion areas as difficult samples. The modified YOLACT algorithm model achieved higher accuracy and better classification performance than the YOLACT model. The detection accuracy of the modified YOLACT algorithm model with the difficult-sample-mining mechanism is improved by nearly 3% for common and difficult sample images. Compared with Mask R-CNN, it is still faster in running speed, and the difference in recognition accuracy is not obvious. The modified YOLACT algorithm had a classification accuracy of 98.5% for the common sample test set and 93.6% for difficult samples. We constructed a modified YOLACT algorithm model, which is superior to the YOLACT algorithm model in diagnosis and classification accuracy.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer Science and Technology, Guizhou University, Guiyang 550001, China
- Institute for Artificial Intelligence, Guizhou University, Guiyang 550001, China
- Guizhou Provincial People's Hospital, Guiyang 550001, China
| | - Yisong Wang
- College of Computer Science and Technology, Guizhou University, Guiyang 550001, China
- Institute for Artificial Intelligence, Guizhou University, Guiyang 550001, China
| |
Collapse
|
2
|
Wolf S, Bailoni A, Pape C, Rahaman N, Kreshuk A, Kothe U, Hamprecht FA. The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; 43:3724-3738. [PMID: 32175858 DOI: 10.1109/tpami.2020.2980827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments, or equivalently to detect closed contours. Most prior work either requires seeds, one per segment; or a threshold; or formulates the task as multicut / correlation clustering, an NP-hard problem. Here, we propose an efficient algorithm for graph partitioning, the "Mutex Watershed". Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a previously unspecified number of segments without the need for explicit seeds or a tunable threshold. We also prove that this simple algorithm solves to global optimality an objective function that is intimately related to the multicut / correlation clustering integer linear programming formulation. The algorithm is deterministic, very simple to implement, and has empirically linearithmic complexity. When presented with short-range attractive and long-range repulsive cues from a deep neural network, the Mutex Watershed gives the best results currently known for the competitive ISBI 2012 EM segmentation benchmark.
Collapse
|
3
|
Zhang W, Wu Y, Yang B, Hu S, Wu L, Dhelimd S. Overview of Multi-Modal Brain Tumor MR Image Segmentation. Healthcare (Basel) 2021; 9:1051. [PMID: 34442188 PMCID: PMC8392341 DOI: 10.3390/healthcare9081051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
The precise segmentation of brain tumor images is a vital step towards accurate diagnosis and effective treatment of brain tumors. Magnetic Resonance Imaging (MRI) can generate brain images without tissue damage or skull artifacts, providing important discriminant information for clinicians in the study of brain tumors and other brain diseases. In this paper, we survey the field of brain tumor MRI images segmentation. Firstly, we present the commonly used databases. Then, we summarize multi-modal brain tumor MRI image segmentation methods, which are divided into three categories: conventional segmentation methods, segmentation methods based on classical machine learning methods, and segmentation methods based on deep learning methods. The principles, structures, advantages and disadvantages of typical algorithms in each method are summarized. Finally, we analyze the challenges, and suggest a prospect for future development trends.
Collapse
Affiliation(s)
- Wenyin Zhang
- School of Information Science and Engineering, Linyi University, Linyi 276000, China; (W.Z.); (S.H.)
| | - Yong Wu
- School of Information Science and Engineering, Linyi University, Linyi 276000, China; (W.Z.); (S.H.)
| | - Bo Yang
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan 250022, China;
| | - Shunbo Hu
- School of Information Science and Engineering, Linyi University, Linyi 276000, China; (W.Z.); (S.H.)
| | - Liang Wu
- School of Control Science and Engineering, Shandong University, Jinan 250061, China;
| | - Sahraoui Dhelimd
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
4
|
Bouchebbah F, Slimani H. Levels Propagation Approach to Image Segmentation: Application to Breast MR Images. J Digit Imaging 2020; 32:433-449. [PMID: 30706211 DOI: 10.1007/s10278-018-00171-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Accurate segmentation of a breast tumor region is fundamental for treatment. Magnetic resonance imaging (MRI) is a widely used diagnostic tool. In this paper, a new semi-automatic segmentation approach for MRI breast tumor segmentation called Levels Propagation Approach (LPA) is introduced. The introduced segmentation approach takes inspiration from tumor propagation and relies on a finite set of nested and non-overlapped levels. LPA has several features: it is highly suitable to parallelization and offers a simple and dynamic possibility to automate the threshold selection. Furthermore, it allows stopping of the segmentation at any desired limit. Particularly, it allows to avoid to reach the breast skin-line region which is known as a significant issue that reduces the precision and the effectiveness of the breast tumor segmentation. The proposed approach have been tested on two clinical datasets, namely RIDER breast tumor dataset and CMH-LIMED breast tumor dataset. The experimental evaluations have shown that LPA has produced competitive results to some state-of-the-art methods and has acceptable computation complexity.
Collapse
Affiliation(s)
- Fatah Bouchebbah
- LIMED Laboratory, Computer Science Department, University of Bejaia, 06000, Bejaia, Algeria.
| | - Hachem Slimani
- LIMED Laboratory, Computer Science Department, University of Bejaia, 06000, Bejaia, Algeria
| |
Collapse
|
5
|
Feasibility of Automatic Seed Generation Applied to Cardiac MRI Image Analysis. MATHEMATICS 2020. [DOI: 10.3390/math8091511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a method of using interactive image segmentation algorithms to reduce specific image segmentation problems to the task of finding small sets of pixels identifying the regions of interest. To this end, we empirically show the feasibility of automatically generating seeds for GrowCut, a popular interactive image segmentation algorithm. The principal contribution of our paper is the proposal of a method for automating the seed generation method for the task of whole-heart segmentation of MRI scans, which achieves competitive unsupervised results (0.76 Dice on the MMWHS dataset). Moreover, we show that segmentation performance is robust to seeds with imperfect precision, suggesting that GrowCut-like algorithms can be applied to medical imaging tasks with little modeling effort.
Collapse
|
6
|
Threshold Isocontouring on High b-Value Diffusion-Weighted Images in Magnetic Resonance Mammography. J Comput Assist Tomogr 2019; 43:434-442. [PMID: 31082949 DOI: 10.1097/rct.0000000000000868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Motivated by the similar appearance of malignant breast lesions in high b-value diffusion-weighted imaging (DWI) and positron emission tomography, the purpose of this work was to evaluate the applicability of a threshold isocontouring approach commonly used in positron emission tomography to analyze DWI data acquired from female human breasts with minimal interobserver variability. METHODS Twenty-three female participants (59.4 ± 10.0 years) with 23 lesions initially classified as suggestive of cancers in x-ray mammography screening were subsequently imaged on a 1.5-T magnetic resonance imaging scanner. Diffusion-weighted imaging was performed prior to biopsy with b values of 0, 100, 750, and 1500 s/mm. Isocontouring with different threshold levels was performed on the highest b-value image to determine the voxels used for subsequent evaluation of diffusion metrics. The coefficient of variation was computed by specifying 4 different regions of interest drawn around the lesion. Additionally, a receiver operating statistical analysis was performed. RESULTS Using a relative threshold level greater than or equal to 0.85 almost completely suppresses the intra-individual and inter-individual variability. Among 4 studied diffusion metrics, the diffusion coefficients from the intravoxel incoherent motion model returned the highest area under curve value of 0.9. The optimal cut-off diffusivity was found to be 0.85 μm/ms with a sensitivity of 87.5% and specificity of 90.9%. CONCLUSION Threshold isocontouring on high b-value maps is a viable approach to reliably evaluate DWI data of suspicious focal lesions in magnetic resonance mammography.
Collapse
|
7
|
A Novel Neutrosophic Method for Automatic Seed Point Selection in Thyroid Nodule Images. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7632308. [PMID: 31093502 PMCID: PMC6481159 DOI: 10.1155/2019/7632308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/19/2019] [Indexed: 11/17/2022]
Abstract
The thyroid nodule is one of the endocrine issues caused by an irregular cell development. This rate of survival can be improved by earlier nodule detection. Accordingly, the accurate recognition of the nodule is of the utmost importance in providing powerful results in building the survival rate. The reduction in the accuracy of manual or semiautomatic segmentation methods for thyroid nodule detection is due to many factors, basically, the lack of experience of the sonographer and latency of operation. Most lesion regions in ultrasound images are homogeneous. Therefore, the value of entropy in these regions is high compared to its neighbours. Based on this criterion, a novel procedure for automatically selecting the seed point in thyroid nodule images is proposed. The proposed system consists of three components: neutrosophic image enhancement and speckle reduction to reduce speckle noise and automatic seed selection algorithm extracted from the centre of candidate block in ultrasound thyroid images based on the principle that most of its Higher Order Spectra Entropies (HOSE) from Radon Transform (RT) at different angles are within the range between average and maximum entropies, and the region growing image segmentation is applied with the constant threshold. The performance of proposed automatic segmentation method is compared with other methods in terms of calculating, True Positive (TP) value (96.44 ± 3.01%), False Positive (FP) value (3.55 ± 1.45%), Dice Coefficient (DC) value (92.24 ± 6.47%), Similarity Index (SI) (80.57 ± 1.06%), and Hausdroff Distance (HD) (0.42 ± 0.24 pixels). The proposed system can be considered as an added value to the malignancy diagnosis in thyroid nodule by an endocrinologist.
Collapse
|
8
|
Pandey D, Yin X, Wang H, Su MY, Chen JH, Wu J, Zhang Y. Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs. Heliyon 2018; 4:e01042. [PMID: 30582055 PMCID: PMC6299131 DOI: 10.1016/j.heliyon.2018.e01042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/04/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Accurate segmentation of the breast region of interest (BROI) and breast density (BD) is a significant challenge during the analysis of breast MR images. Most of the existing methods for breast segmentation are semi-automatic and limited in their ability to achieve accurate results. This is because of difficulties in removing landmarks from noisy magnetic resonance images (MRI) due to similar intensity levels and the close connection to BROI. This study proposes an innovative, fully automatic and fast segmentation approach to identify and remove landmarks such as the heart and pectoral muscles. The BROI segmentation is carried out with a framework consisting of three major steps. Firstly, we use adaptive wiener filtering and k-means clustering to minimize the influence of noises, preserve edges and remove unwanted artefacts. The second step systematically excludes the heart area by utilizing active contour based level sets where initial contour points are determined by the maximum entropy thresholding and convolution method. Finally, a pectoral muscle is removed by using morphological operations and local adaptive thresholding on MR images. Prior to the elimination of the pectoral muscle, the MR image is sub divided into three sections: left, right, and central based on the geometrical information. Subsequently, a BD segmentation is achieved with 4 level fuzzy c-means (FCM) thresholding on the denoised BROI segmentation. The proposed method is validated using the 1350 breast images from 15 female subjects. The pixel-based quantitative analysis showed excellent segmentation results when compared with manually drawn BROI and BD. Furthermore, the presented results in terms of evaluation matrices: Acc, Sp, AUC, MR, P, Se and DSC demonstrate the high quality of segmentations using the proposed method. The average computational time for the segmentation of BROI and BD is 1 minute and 50 seconds.
Collapse
Affiliation(s)
- Dinesh Pandey
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology (CIAT), Guangzhou University, Guangzhou 510006, China
| | - Hua Wang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Min-Ying Su
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA, United States of America
| | - Jeon-Hor Chen
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA, United States of America
- Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
| | - Jianlin Wu
- Department of Radiology, Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yanchun Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| |
Collapse
|
9
|
d'Humières T, Faivre L, Chammous E, Deux JF, Bergoënd E, Fiore A, Radu C, Couetil JP, Benhaiem N, Derumeaux G, Dubois-Randé JL, Ternacle J, Fard D, Lim P. A New Three-Dimensional Echocardiography Method to Quantify Aortic Valve Calcification. J Am Soc Echocardiogr 2018; 31:1073-1079. [DOI: 10.1016/j.echo.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 11/30/2022]
|
10
|
Application of Radiomics and Decision Support Systems for Breast MR Differential Diagnosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:7417126. [PMID: 30344618 PMCID: PMC6174735 DOI: 10.1155/2018/7417126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/24/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
Over the years, MR systems have evolved from imaging modalities to advanced computational systems producing a variety of numerical parameters that can be used for the noninvasive preoperative assessment of breast pathology. Furthermore, the combination with state-of-the-art image analysis methods provides a plethora of quantifiable imaging features, termed radiomics that increases diagnostic accuracy towards individualized therapy planning. More importantly, radiomics can now be complemented by the emerging deep learning techniques for further process automation and correlation with other clinical data which facilitate the monitoring of treatment response, as well as the prediction of patient's outcome, by means of unravelling of the complex underlying pathophysiological mechanisms which are reflected in tissue phenotype. The scope of this review is to provide applications and limitations of radiomics towards the development of clinical decision support systems for breast cancer diagnosis and prognosis.
Collapse
|
11
|
Fuzzy entropy based on differential evolution for breast gland segmentation. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:1101-1114. [PMID: 30203178 DOI: 10.1007/s13246-018-0672-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
For the diagnosis and treatment of breast tumors, the automatic detection of glands is a crucial step. The true segmentation of the gland is directly related to effective treatment effect of the patient. Therefore, it is necessary to propose an automatic segmentation algorithm based on mammary gland features. A segmentation method of differential evolution (DE) fuzzy entropy based on mammary gland is proposed in the paper. According to the image fuzzy entropy, the evaluation function of image segmentation is constructed in the first step. Then, the method adopts DE, the image fuzzy entropy parameter is regard as the initial population of individual. After the mutation, crossover and selection of three evolutionary processes to search for the maximum fuzzy entropy of parameters, the optimal threshold of the segmented gland is achieved. Finally, the mammary gland is segmented by the threshold method of maximum fuzzy entropy. Eight breast images with four tissue types are tested 100 times, with accuracy (Acc), sensitivity (Sen), specificity (Spe), positive predictive value (PPV), negative predicted value (NPV), and average structural similarity (Mssim) to measure the segmentation result. The Acc of the proposed algorithm is 98.46 ± 8.02E-03%, 95.93 ± 2.38E-02%, 93.88 ± 6.59E-02%, 94.73 ± 1.82E-01%, 96.19 ± 1.15E-02%, and 97.51 ± 1.36E-02%, 96.64 ± 6.35E-02%, and 94.76 ± 6.21E-02%, respectively. The mean Mssim values of the 100 tests were 0.985, 0.933, 0.924, 0.907, 0.984, 0.928, 0.938, and 0.941, respectively. Our proposed algorithm is more effective and robust in comparison to the other fuzzy entropy based on swarm intelligent optimization algorithms. The experimental results show that the proposed algorithm has higher accuracy in the segmentation of mammary glands, and may serve as a gold standard in the analysis of treatment of breast tumors.
Collapse
|
12
|
Mohammed MA, Abd Ghani MK, Hamed RI, Ibrahim DA, Abdullah MK. Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma. JOURNAL OF COMPUTATIONAL SCIENCE 2017; 21:263-274. [DOI: 10.1016/j.jocs.2017.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Jalalian A, Mashohor S, Mahmud R, Karasfi B, Saripan MIB, Ramli ARB. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI JOURNAL 2017; 16:113-137. [PMID: 28435432 PMCID: PMC5379115 DOI: 10.17179/excli2016-701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
Abstract
Breast cancer is the most prevalent cancer that affects women all over the world. Early detection and treatment of breast cancer could decline the mortality rate. Some issues such as technical reasons, which related to imaging quality and human error, increase misdiagnosis of breast cancer by radiologists. Computer-aided detection systems (CADs) are developed to overcome these restrictions and have been studied in many imaging modalities for breast cancer detection in recent years. The CAD systems improve radiologists' performance in finding and discriminating between the normal and abnormal tissues. These procedures are performed only as a double reader but the absolute decisions are still made by the radiologist. In this study, the recent CAD systems for breast cancer detection on different modalities such as mammography, ultrasound, MRI, and biopsy histopathological images are introduced. The foundation of CAD systems generally consist of four stages: Pre-processing, Segmentation, Feature extraction, and Classification. The approaches which applied to design different stages of CAD system are summarised. Advantages and disadvantages of different segmentation, feature extraction and classification techniques are listed. In addition, the impact of imbalanced datasets in classification outcomes and appropriate methods to solve these issues are discussed. As well as, performance evaluation metrics for various stages of breast cancer detection CAD systems are reviewed.
Collapse
Affiliation(s)
- Afsaneh Jalalian
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra, Malaysia
| | - Syamsiah Mashohor
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra, Malaysia
| | - Rozi Mahmud
- Department of Imaging, Faculty of Medicine and Health Science, Universiti Putra, Malaysia
| | - Babak Karasfi
- Department of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - M. Iqbal B. Saripan
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra, Malaysia
| | - Abdul Rahman B. Ramli
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra, Malaysia
| |
Collapse
|
14
|
Kostopoulos SA, Vassiou KG, Lavdas EN, Cavouras DA, Kalatzis IK, Asvestas PA, Arvanitis DL, Fezoulidis IV, Glotsos DT. Computer-based automated estimation of breast vascularity and correlation with breast cancer in DCE-MRI images. Magn Reson Imaging 2016; 35:39-45. [PMID: 27569368 DOI: 10.1016/j.mri.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/21/2016] [Accepted: 08/20/2016] [Indexed: 11/25/2022]
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) with gadolinium constitutes one of the most promising protocols for boosting up the sensitivity in breast cancer detection. The aim of this study was twofold: first to design an image processing methodology to estimate the vascularity of the breast region in DCE-MRI images and second to investigate whether the differences in the composition/texture and vascularity of normal, benign and malignant breasts may serve as potential indicators regarding the presence of the disease. Clinical material comprised thirty nine cases examined on a 3.0-T MRI system (SIGNA HDx; GE Healthcare). Vessel segmentation was performed using a custom made modification of the Seeded Region Growing algorithm that was designed in order to identify pixels belonging to the breast vascular network. Two families of features were extracted: first, morphological and textural features from segmented images in order to quantify the extent and the properties of the vascular network; second, textural features from the whole breast region in order to investigate whether the nature of the disease causes statistically important changes in the texture of affected breasts. Results have indicated that: (a) the texture of vessels presents statistically significant differences (p<0.001) between normal, benign and malignant cases, (b) the texture of the whole breast region for malignant and non-malignant breasts, produced statistically significant differences (p<0.001), (c) the relative ratios of the texture between the two breasts may be used for the discrimination of non-malignant from malignant patients, and (d) an area under the receiver operating characteristic curve of 0.908 (AUC) was found when features were combined in a logistic regression prediction rule according to ROC analysis.
Collapse
Affiliation(s)
- Spiros A Kostopoulos
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos, Egaleo, Athens, 12210, Greece
| | - Katerina G Vassiou
- Department of Radiology, Medical School of Thessaly, University Hospital of Larissa, Biopolis, Larissa, 41110, Greece
| | - Eleftherios N Lavdas
- Department of Medical Radiologic Technology, Technological Educational Institute of Athens, Ag. Spyridonos, Egaleo, Athens, 12210, Greece
| | - Dionisis A Cavouras
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos, Egaleo, Athens, 12210, Greece
| | - Ioannis K Kalatzis
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos, Egaleo, Athens, 12210, Greece
| | - Pantelis A Asvestas
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos, Egaleo, Athens, 12210, Greece
| | - Dimitrios L Arvanitis
- Department of Anatomy, School of Health Sciences, University of Larissa, Biopolis, Larissa, 41110, Greece
| | - Ioannis V Fezoulidis
- Department of Radiology, Medical School of Thessaly, University Hospital of Larissa, Biopolis, Larissa, 41110, Greece
| | - Dimitris T Glotsos
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos, Egaleo, Athens, 12210, Greece.
| |
Collapse
|