1
|
Wang Z, Wang F, Yang Y, Fan W, Wen L, Zhang D. Development of a nomogram-based model incorporating radiomic features from follow-up longitudinal lung CT images to distinguish invasive adenocarcinoma from benign lesions: a retrospective study. BMC Pulm Med 2024; 24:534. [PMID: 39455958 PMCID: PMC11515265 DOI: 10.1186/s12890-024-03360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
PURPOSE To develop and validate a radiomic model for differentiating pulmonary invasive adenocarcinomas from benign lesions based on follow-up longitudinal CT images. METHODS This is a retrospective study including 336 patients (161 with invasive adenocarcinomas and 175 with benign lesions) who underwent baseline (T0) and follow-up (T1) CT scans from January 2016 to June 2022. The patients were randomized in a 7:3 ratio into training and test sets. Radiomic features were extracted from lesion volumes of interest on longitudinal CT images at T0 and T1. Differences in radiomic features between T1 and T0 were defined as delta-radiomic features. Logistic regression was used to build models based on clinicoradiological (CR), T0, T1, and delta radiomic features and compute signatures. Finally, a nomogram based on the CR, T0, T1 and delta signatures was constructed. Model performance was evaluated for calibration, discrimination, and clinical utility. RESULTS The T1 radiomic model was superior to the other independent models. In the training set, it had an area under the curve (AUC) of 0.858), superior to the CR model (AUC 0.694), the T0 radiomic model (AUC 0.825), and the delta radiomic model (AUC 0.734). In the test set, it had an AUC of 0.817, again outperforming the CR model (AUC 0.578), the T0 radiomic model (AUC 0.789), and the delta radiomic model (AUC 0.647). The nomogram incorporating the CR, T0, T1 and delta signatures showed the best predictive performance in both the training (AUC: 0.906) and test sets (AUC: 0.856), and it exhibited excellent fit with calibration curves. Decision curve analysis provided additional validation of the clinical utility of the nomogram. CONCLUSION A nomogram utilizing radiomic features extracted from longitudinal CT images can enhance the discriminative capability between pulmonary invasive adenocarcinomas and benign lesions.
Collapse
Affiliation(s)
- Zhengming Wang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Fei Wang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Medical imaging, Luzhou People's Hospital, Luzhou, 646000, China
| | - Yan Yang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Weijie Fan
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Li Wen
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Dong Zhang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
2
|
Tang T, Zhang R. A Multi-Task Model for Pulmonary Nodule Segmentation and Classification. J Imaging 2024; 10:234. [PMID: 39330454 PMCID: PMC11433280 DOI: 10.3390/jimaging10090234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
In the computer-aided diagnosis of lung cancer, the automatic segmentation of pulmonary nodules and the classification of benign and malignant tumors are two fundamental tasks. However, deep learning models often overlook the potential benefits of task correlations in improving their respective performances, as they are typically designed for a single task only. Therefore, we propose a multi-task network (MT-Net) that integrates shared backbone architecture and a prediction distillation structure for the simultaneous segmentation and classification of pulmonary nodules. The model comprises a coarse segmentation subnetwork (Coarse Seg-net), a cooperative classification subnetwork (Class-net), and a cooperative segmentation subnetwork (Fine Seg-net). Coarse Seg-net and Fine Seg-net share identical structure, where Coarse Seg-net provides prior location information for the subsequent Fine Seg-net and Class-net, thereby boosting pulmonary nodule segmentation and classification performance. We quantitatively and qualitatively analyzed the performance of the model by using the public dataset LIDC-IDRI. Our results show that the model achieves a Dice similarity coefficient (DI) index of 83.2% for pulmonary nodule segmentation, as well as an accuracy (ACC) of 91.9% for benign and malignant pulmonary nodule classification, which is competitive with other state-of-the-art methods. The experimental results demonstrate that the performance of pulmonary nodule segmentation and classification can be improved by a unified model that leverages the potential correlation between tasks.
Collapse
Affiliation(s)
- Tiequn Tang
- School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Rongfu Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Zeng Y, Zhou X, Zhou T, Liu H, Zhou Y, Lin S, Zhang W. Peritumoral radiomics increases the efficiency of classification of pure ground-glass lung nodules: a multicenter study. J Cardiothorac Surg 2024; 19:505. [PMID: 39215360 PMCID: PMC11363534 DOI: 10.1186/s13019-024-03008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE We aimed to evaluate the efficiency of computed tomography (CT) radiomic features extracted from gross tumor volume (GTV) and peritumoral volumes (PTV) of 5, 10, and 15 mm to identify the tumor grades corresponding to the new histological grading system proposed in 2020 by the Pathology Committee of the International Association for the Study of Lung Cancer (IASLC). METHODS A total of 151 lung adenocarcinomas manifesting as pure ground-glass lung nodules (pGGNs) were included in this randomized multicenter retrospective study. Four radiomic models were constructed from GTV and GTV + 5/10/15-mm PTV, respectively, and compared. The diagnostic performance of the different models was evaluated using receiver operating characteristic curve analysis RESULTS: The pGGNs were classified into grade 1 (117), 2 (34), and 3 (0), according to the IASLC grading system. In all four radiomic models, pGGNs of grade 2 had significantly higher radiomic scores than those of grade 1 (P < 0.05). The AUC of the GTV and GTV + 5/10/15-mm PTV were 0.869, 0.910, 0.951, and 0.872 in the training cohort and 0.700, 0.715, 0.745, and 0.724 in the validation cohort, respectively. CONCLUSIONS The radiomic features we extracted from the GTV and PTV of pGGNs could effectively be used to differentiate grade-1 and grade-2 tumors. In particular, the radiomic features from the PTV increased the efficiency of the diagnostic model, with GTV + 10 mm PTV exhibiting the highest efficacy.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Xiao Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Tianzhi Zhou
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China
| | - Haibo Liu
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Yingjun Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Shanyue Lin
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, 8 Wenchang Road, Liuzhou, 545006, China.
| |
Collapse
|
4
|
Tian C, Hu Y, Li S, Zhang X, Wei Q, Li K, Chen X, Zheng L, Yang X, Qin Y, Bian Y. Peri- and intra-nodular radiomic features based on 18F-FDG PET/CT to distinguish lung adenocarcinomas from pulmonary granulomas. Front Med (Lausanne) 2024; 11:1453421. [PMID: 39175818 PMCID: PMC11339787 DOI: 10.3389/fmed.2024.1453421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Objective To compare the effectiveness of radiomic features based on 18F-FDG PET/CT images within (intranodular) and around (perinodular) lung nodules/masses in distinguishing between lung adenocarcinoma and pulmonary granulomas. Methods For this retrospective study, 18F-FDG PET/CT images were collected for 228 patients. Patients diagnosed with lung adenocarcinoma (n = 156) or granulomas (n = 72) were randomly assigned to a training (n = 159) and validation (n = 69) groups. The volume of interest (VOI) of intranodular, perinodular (1-5 voxels, termed Lesion_margin1 to Lesion_margin5) and total area (intra- plus perinodular region, termed Lesion_total1 to Lesion_total5) on PET/CT images were delineated using PETtumor and Marge tool of segmentation editor. A total of 1,037 radiomic features were extracted separately from PET and CT images, and the optimal features were selected to develop radiomic models. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results Good and acceptable performance was, respectively, observed in the training (AUC = 0.868, p < 0.001) and validation (AUC = 0.715, p = 0.004) sets for the intranodular radiomic model. Among the perinodular models, the Lesion_margin2 model demonstrated the highest AUC in both sets (0.883 and 0.616, p < 0.001 and p = 0.122). Similarly, in terms of total models, Lesion_total2 model was found to outperform others in the training (AUC = 0.879, p < 0.001) and validation (AUC = 0.742, p = 0.001) sets, slightly surpassing the intranodular model. Conclusion When intra- and perinodular radiomic features extracted from the immediate vicinity of the nodule/mass up to 2 voxels distance on 18F-FDG PET/CT imaging are combined, improved differential diagnostic performance in distinguishing between lung adenocarcinomas and granulomas is achieved compared to the intra- and perinodular radiomic features alone.
Collapse
Affiliation(s)
- Congna Tian
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yujing Hu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xinchao Zhang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qiang Wei
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Kang Li
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Zheng
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xin Yang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanan Qin
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanzhu Bian
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Liu J, Qi L, Wang Y, Li F, Chen J, Cui S, Cheng S, Zhou Z, Li L, Wang J. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules. Eur Radiol Exp 2024; 8:8. [PMID: 38228868 DOI: 10.1186/s41747-023-00400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND We aimed to develop a combined model based on radiomics and computed tomography (CT) imaging features for use in differential diagnosis of benign and malignant subcentimeter (≤ 10 mm) solid pulmonary nodules (SSPNs). METHODS A total of 324 patients with SSPNs were analyzed retrospectively between May 2016 and June 2022. Malignant nodules (n = 158) were confirmed by pathology, and benign nodules (n = 166) were confirmed by follow-up or pathology. SSPNs were divided into training (n = 226) and testing (n = 98) cohorts. A total of 2107 radiomics features were extracted from contrast-enhanced CT. The clinical and CT characteristics retained after univariate and multivariable logistic regression analyses were used to develop the clinical model. The combined model was established by associating radiomics features with CT imaging features using logistic regression. The performance of each model was evaluated using the area under the receiver-operating characteristic curve (AUC). RESULTS Six CT imaging features were independent predictors of SSPNs, and four radiomics features were selected after a dimensionality reduction. The combined model constructed by the logistic regression method had the best performance in differentiating malignant from benign SSPNs, with an AUC of 0.942 (95% confidence interval 0.918-0.966) in the training group and an AUC of 0.930 (0.902-0.957) in the testing group. The decision curve analysis showed that the combined model had clinical application value. CONCLUSIONS The combined model incorporating radiomics and CT imaging features had excellent discriminative ability and can potentially aid radiologists in diagnosing malignant from benign SSPNs. RELEVANCE STATEMENT The model combined radiomics features and clinical features achieved good efficiency in predicting malignant from benign SSPNs, having the potential to assist in early diagnosis of lung cancer and improving follow-up strategies in clinical work. KEY POINTS • We developed a pulmonary nodule diagnostic model including radiomics and CT features. • The model yielded the best performance in differentiating malignant from benign nodules. • The combined model had clinical application value and excellent discriminative ability. • The model can assist radiologists in diagnosing malignant from benign pulmonary nodules.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Linlin Qi
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yawen Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fenglan Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiaqi Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shulei Cui
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sainan Cheng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhen Zhou
- Beijing Deepwise & League of PhD Technology Co. Ltd, Beijing, China
| | - Lin Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jianwei Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
6
|
Shivwanshi RR, Nirala N. Hyperparameter optimization and development of an advanced CNN-based technique for lung nodule assessment. Phys Med Biol 2023; 68:175038. [PMID: 37567211 DOI: 10.1088/1361-6560/acef8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Objective. This paper aims to propose an advanced methodology for assessing lung nodules using automated techniques with computed tomography (CT) images to detect lung cancer at an early stage.Approach. The proposed methodology utilizes a fixed-size 3 × 3 kernel in a convolution neural network (CNN) for relevant feature extraction. The network architecture comprises 13 layers, including six convolution layers for deep local and global feature extraction. The nodule detection architecture is enhanced by incorporating a transfer learning-based EfficientNetV_2 network (TLEV2N) to improve training performance. The classification of nodules is achieved by integrating the EfficientNet_V2 architecture of CNN for more accurate benign and malignant classification. The network architecture is fine-tuned to extract relevant features using a deep network while maintaining performance through suitable hyperparameters.Main results. The proposed method significantly reduces the false-negative rate, with the network achieving an accuracy of 97.56% and a specificity of 98.4%. Using the 3 × 3 kernel provides valuable insights into minute pixel variation and enables the extraction of information at a broader morphological level. The continuous responsiveness of the network to fine-tune initial values allows for further optimization possibilities, leading to the design of a standardized system capable of assessing diversified thoracic CT datasets.Significance. This paper highlights the potential of non-invasive techniques for the early detection of lung cancer through the analysis of low-dose CT images. The proposed methodology offers improved accuracy in detecting lung nodules and has the potential to enhance the overall performance of early lung cancer detection. By reconfiguring the proposed method, further advancements can be made to optimize outcomes and contribute to developing a standardized system for assessing diverse thoracic CT datasets.
Collapse
|
7
|
Baidya Kayal E, Ganguly S, Sasi A, Sharma S, DS D, Saini M, Rangarajan K, Kandasamy D, Bakhshi S, Mehndiratta A. A proposed methodology for detecting the malignant potential of pulmonary nodules in sarcoma using computed tomographic imaging and artificial intelligence-based models. Front Oncol 2023; 13:1212526. [PMID: 37671060 PMCID: PMC10476362 DOI: 10.3389/fonc.2023.1212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The presence of lung metastases in patients with primary malignancies is an important criterion for treatment management and prognostication. Computed tomography (CT) of the chest is the preferred method to detect lung metastasis. However, CT has limited efficacy in differentiating metastatic nodules from benign nodules (e.g., granulomas due to tuberculosis) especially at early stages (<5 mm). There is also a significant subjectivity associated in making this distinction, leading to frequent CT follow-ups and additional radiation exposure along with financial and emotional burden to the patients and family. Even 18F-fluoro-deoxyglucose positron emission technology-computed tomography (18F-FDG PET-CT) is not always confirmatory for this clinical problem. While pathological biopsy is the gold standard to demonstrate malignancy, invasive sampling of small lung nodules is often not clinically feasible. Currently, there is no non-invasive imaging technique that can reliably characterize lung metastases. The lung is one of the favored sites of metastasis in sarcomas. Hence, patients with sarcomas, especially from tuberculosis prevalent developing countries, can provide an ideal platform to develop a model to differentiate lung metastases from benign nodules. To overcome the lack of optimal specificity of CT scan in detecting pulmonary metastasis, a novel artificial intelligence (AI)-based protocol is proposed utilizing a combination of radiological and clinical biomarkers to identify lung nodules and characterize it as benign or metastasis. This protocol includes a retrospective cohort of nearly 2,000-2,250 sample nodules (from at least 450 patients) for training and testing and an ambispective cohort of nearly 500 nodules (from 100 patients; 50 patients each from the retrospective and prospective cohort) for validation. Ground-truth annotation of lung nodules will be performed using an in-house-built segmentation tool. Ground-truth labeling of lung nodules (metastatic/benign) will be performed based on histopathological results or baseline and/or follow-up radiological findings along with clinical outcome of the patient. Optimal methods for data handling and statistical analysis are included to develop a robust protocol for early detection and classification of pulmonary metastasis at baseline and at follow-up and identification of associated potential clinical and radiological markers.
Collapse
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shuvadeep Ganguly
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Archana Sasi
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Swetambri Sharma
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Dheeksha DS
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Manish Saini
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Krithika Rangarajan
- Radiodiagnosis, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Sameer Bakhshi
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
8
|
Wang H, Zhu H, Ding L, Yang K. A diagnostic classification of lung nodules using multiple-scale residual network. Sci Rep 2023; 13:11322. [PMID: 37443333 PMCID: PMC10345110 DOI: 10.1038/s41598-023-38350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Computed tomography (CT) scans have been shown to be an effective way of improving diagnostic efficacy and reducing lung cancer mortality. However, distinguishing benign from malignant nodules in CT imaging remains challenging. This study aims to develop a multiple-scale residual network (MResNet) to automatically and precisely extract the general feature of lung nodules, and classify lung nodules based on deep learning. The MResNet aggregates the advantages of residual units and pyramid pooling module (PPM) to learn key features and extract the general feature for lung nodule classification. Specially, the MResNet uses the ResNet as a backbone network to learn contextual information and discriminate feature representation. Meanwhile, the PPM is used to fuse features under four different scales, including the coarse scale and the fine-grained scale to obtain more general lung features of the CT image. MResNet had an accuracy of 99.12%, a sensitivity of 98.64%, a specificity of 97.87%, a positive predictive value (PPV) of 99.92%, and a negative predictive value (NPV) of 97.87% in the training set. Additionally, its area under the receiver operating characteristic curve (AUC) was 0.9998 (0.99976-0.99991). MResNet's accuracy, sensitivity, specificity, PPV, NPV, and AUC in the testing set were 85.23%, 92.79%, 72.89%, 84.56%, 86.34%, and 0.9275 (0.91662-0.93833), respectively. The developed MResNet performed exceptionally well in estimating the malignancy risk of pulmonary nodules found on CT. The model has the potential to provide reliable and reproducible malignancy risk scores for clinicians and radiologists, thereby optimizing lung cancer screening management.
Collapse
Affiliation(s)
- Hongfeng Wang
- School of Network Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hai Zhu
- School of Network Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
9
|
Sousa JV, Matos P, Silva F, Freitas P, Oliveira HP, Pereira T. Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening? SENSORS (BASEL, SWITZERLAND) 2023; 23:5597. [PMID: 37420765 DOI: 10.3390/s23125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In a clinical context, physicians usually take into account information from more than one data modality when making decisions regarding cancer diagnosis and treatment planning. Artificial intelligence-based methods should mimic the clinical method and take into consideration different sources of data that allow a more comprehensive analysis of the patient and, as a consequence, a more accurate diagnosis. Lung cancer evaluation, in particular, can benefit from this approach since this pathology presents high mortality rates due to its late diagnosis. However, many related works make use of a single data source, namely imaging data. Therefore, this work aims to study the prediction of lung cancer when using more than one data modality. The National Lung Screening Trial dataset that contains data from different sources, specifically, computed tomography (CT) scans and clinical data, was used for the study, the development and comparison of single-modality and multimodality models, that may explore the predictive capability of these two types of data to their full potential. A ResNet18 network was trained to classify 3D CT nodule regions of interest (ROI), whereas a random forest algorithm was used to classify the clinical data, with the former achieving an area under the ROC curve (AUC) of 0.7897 and the latter 0.5241. Regarding the multimodality approaches, three strategies, based on intermediate and late fusion, were implemented to combine the information from the 3D CT nodule ROIs and the clinical data. From those, the best model-a fully connected layer that receives as input a combination of clinical data and deep imaging features, given by a ResNet18 inference model-presented an AUC of 0.8021. Lung cancer is a complex disease, characterized by a multitude of biological and physiological phenomena and influenced by multiple factors. It is thus imperative that the models are capable of responding to that need. The results obtained showed that the combination of different types may have the potential to produce more comprehensive analyses of the disease by the models.
Collapse
Affiliation(s)
- Joana Vale Sousa
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
- Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal
| | - Pedro Matos
- Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal
| | - Francisco Silva
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
- Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Pedro Freitas
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
- Faculty of Engineering (FEUP), University of Porto, 4200-465 Porto, Portugal
| | - Hélder P Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
- Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
| |
Collapse
|
10
|
A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers (Basel) 2023; 15:cancers15030843. [PMID: 36765801 PMCID: PMC9913559 DOI: 10.3390/cancers15030843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Although many studies have shown that deep learning approaches yield better results than traditional methods based on manual features, CADs methods still have several limitations. These are due to the diversity in imaging modalities and clinical pathologies. This diversity creates difficulties because of variation and similarities between classes. In this context, the new approach from our study is a hybrid method that performs classifications using both medical image analysis and radial scanning series features. Hence, the areas of interest obtained from images are subjected to a radial scan, with their centers as poles, in order to obtain series. A U-shape convolutional neural network model is then used for the 4D data classification problem. We therefore present a novel approach to the classification of 4D data obtained from lung nodule images. With radial scanning, the eigenvalue of nodule images is captured, and a powerful classification is performed. According to our results, an accuracy of 92.84% was obtained and much more efficient classification scores resulted as compared to recent classifiers.
Collapse
|
11
|
Yi L, Peng Z, Chen Z, Tao Y, Lin Z, He A, Jin M, Peng Y, Zhong Y, Yan H, Zuo M. Identification of pulmonary adenocarcinoma and benign lesions in isolated solid lung nodules based on a nomogram of intranodal and perinodal CT radiomic features. Front Oncol 2022; 12:924055. [PMID: 36147924 PMCID: PMC9485677 DOI: 10.3389/fonc.2022.924055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
To develop and validate a predictive model based on clinical radiology and radiomics to enhance the ability to distinguish between benign and malignant solitary solid pulmonary nodules. In this study, we retrospectively collected computed tomography (CT) images and clinical data of 286 patients with isolated solid pulmonary nodules diagnosed by surgical pathology, including 155 peripheral adenocarcinomas and 131 benign nodules. They were randomly divided into a training set and verification set at a 7:3 ratio, and 851 radiomic features were extracted from thin-layer enhanced venous phase CT images by outlining intranodal and perinodal regions of interest. We conducted preprocessing measures of image resampling and eigenvalue normalization. The minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (lasso) methods were used to downscale and select features. At the same time, univariate and multifactorial analyses were performed to screen clinical radiology features. Finally, we constructed a nomogram based on clinical radiology, intranodular, and perinodular radiomics features. Model performance was assessed by calculating the area under the receiver operating characteristic curve (AUC), and the clinical decision curve (DCA) was used to evaluate the clinical practicability of the models. Univariate and multivariate analyses showed that the two clinical factors of sex and age were statistically significant. Lasso screened four intranodal and four perinodal radiomic features. The nomogram based on clinical radiology, intranodular, and perinodular radiomics features showed the best predictive performance (AUC=0.95, accuracy=0.89, sensitivity=0.83, specificity=0.96), which was superior to other independent models. A nomogram based on clinical radiology, intranodular, and perinodular radiomics features is helpful to improve the ability to predict benign and malignant solitary pulmonary nodules.
Collapse
|
12
|
Cat Swarm Optimization-Based Computer-Aided Diagnosis Model for Lung Cancer Classification in Computed Tomography Images. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer is the most significant cancer that heavily contributes to cancer-related mortality rate, due to its violent nature and late diagnosis at advanced stages. Early identification of lung cancer is essential for improving the survival rate. Various imaging modalities, including X-rays and computed tomography (CT) scans, are employed to diagnose lung cancer. Computer-aided diagnosis (CAD) models are necessary for minimizing the burden upon radiologists and enhancing detection efficiency. Currently, computer vision (CV) and deep learning (DL) models are employed to detect and classify the lung cancer in a precise manner. In this background, the current study presents a cat swarm optimization-based computer-aided diagnosis model for lung cancer classification (CSO-CADLCC) model. The proposed CHO-CADLCC technique initially pre-process the data using the Gabor filtering-based noise removal technique. Furthermore, feature extraction of the pre-processed images is performed with the help of NASNetLarge model. This model is followed by the CSO algorithm with weighted extreme learning machine (WELM) model, which is exploited for lung nodule classification. Finally, the CSO algorithm is utilized for optimal parameter tuning of the WELM model, resulting in an improved classification performance. The experimental validation of the proposed CSO-CADLCC technique was conducted against a benchmark dataset, and the results were assessed under several aspects. The experimental outcomes established the promising performance of the CSO-CADLCC approach over recent approaches under different measures.
Collapse
|
13
|
Lung Nodule Segmentation and Recognition Algorithm Based on Multiposition U-Net. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5112867. [PMID: 35371290 PMCID: PMC8967527 DOI: 10.1155/2022/5112867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022]
Abstract
Lung nodules are the main lesions of the lung, and conditions of the lung can be directly displayed through CT images. Due to the limited pixel number of lung nodules in the lung, doctors have the risk of missed detection and false detection in the detection process. In order to reduce doctors' work intensity and assist doctors to make accurate diagnosis, a lung nodule segmentation and recognition algorithm is proposed by simulating doctors' diagnosis process with computer intelligent methods. Firstly, the attention mechanism model is established to focus on the region of lung parenchyma. Then, a pyramid network of bidirectional enhancement features is established from multiple body positions to extract lung nodules. Finally, the morphological and imaging features of lung nodules are calculated, and then, the signs of lung nodules can be identified. The experiments show that the algorithm conforms to the doctor's diagnosis process, focuses the region of interest step by step, and achieves good results in lung nodule segmentation and recognition.
Collapse
|
14
|
Abstract
The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Collapse
|
15
|
Zheng B, Yang D, Zhu Y, Liu Y, Hu J, Bai C. 3D gray density coding feature for benign-malignant pulmonary nodule classification on chest CT. Med Phys 2021; 48:7826-7836. [PMID: 34655238 DOI: 10.1002/mp.15298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Early detection is significant to reduce lung cancer-related death. Computer-aided detection system (CADs) can help radiologists to make an early diagnosis. In this paper, we propose a novel 3D gray density coding feature (3D GDC) and fuse it with extracted geometric features. The fusion feature and random forest are used for benign-malignant pulmonary nodule classification on Chest CT. METHODS First, a dictionary model is created to acquire codebook. It is used to obtain feature descriptors and includes 3D block database (BD) and distance matrix clustering centers. 3D BD is balanced and randomly selecting from benign and malignant pulmonary nodules of training data. Clustering centers is got by clustering the distance matrix, which is the distance between every two blocks in 3D BD. Then, feature descriptor is obtained by coding the pulmonary nodule with codebook, and 3D GDC feature is the result of histogram statistics on feature descriptor. Second, geometric features are extracted for fusion feature. Finally, random forest is performed for benign-malignant pulmonary nodule classification with fusion feature of the 3D gray density coding feature and the geometric features. RESULTS We verify the effectiveness of our method on the public LIDC-IDRI dataset and the private ZSHD dataset. For LIDC-IDRI dataset, compared with other state-of-the-art methods, we achieve more satisfactory results with 93.17 ± 1.94% for accuracy and 97.53 ± 1.62% for AUC. As for private ZSHD dataset, it contains a total of 238 lung nodules from 203 patients. The accuracy and AUC achieved by our method are 90.0% and 93.15%. CONCLUSIONS The results show that our method can provide doctors with more accurate results of benign-malignant pulmonary nodule classification for auxiliary diagnosis, and our method is more interpretable than 3D CNN methods, which can provide doctors with more auxiliary information.
Collapse
Affiliation(s)
- BingBing Zheng
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Dawei Yang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, China
| | - Yu Zhu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yatong Liu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Hu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, China
| |
Collapse
|