1
|
Purkayastha S, Shalu H, Gutman D, Holodny A, Modak S, Basu E, Kushner B, Kramer K, Haque S, Stember JN. Evolutionary Strategies AI Addresses Multiple Technical Challenges in Deep Learning Deployment: Proof-of-Principle Demonstration for Neuroblastoma Brain Metastasis Detection. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01165-z. [PMID: 38886289 DOI: 10.1007/s10278-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Two significant obstacles hinder the advancement of Radiology AI. The first is the challenge of overfitting, where small training data sets can result in unreliable outcomes. The second challenge is the need for more generalizability, the lack of which creates difficulties in implementing the technology across various institutions and practices. A recent innovation, deep neuroevolution (DNE), has been introduced to tackle the overfitting issue by training on small data sets and producing accurate predictions. However, the generalizability of DNE has yet to be proven. This paper strives to overcome this barrier by demonstrating that DNE can achieve satisfactory results in diverse external validation sets. The main innovation of the work is thus showing that DNE can generalize to varied outside data. Our example use case is predicting brain metastasis from neuroblastoma, emphasizing the importance of AI with limited data sets. Despite image collection and labeling advancements, rare diseases will always constrain data availability. We optimized a convolutional neural network (CNN) with DNE to demonstrate generalizability. We trained the CNN with 60 MRI images and tested it on a separate diverse collection of images from over 50 institutions. For comparison, we also trained with the more traditional stochastic gradient descent (SGD) method, with the two variants of (1) training from scratch and (2) transfer learning. Our results show that DNE demonstrates excellent generalizability with 97% accuracy on the heterogeneous testing set, while neither form of SGD could reach 60% accuracy. DNE's ability to generalize from small training sets to external and diverse testing sets suggests that it or similar approaches may play an integral role in improving the clinical performance of AI.
Collapse
Affiliation(s)
- Subhanik Purkayastha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hrithwik Shalu
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India, 600036
| | - David Gutman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ellen Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Brian Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph N Stember
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
2
|
C Pereira S, Mendonça AM, Campilho A, Sousa P, Teixeira Lopes C. Automated image label extraction from radiology reports - A review. Artif Intell Med 2024; 149:102814. [PMID: 38462277 DOI: 10.1016/j.artmed.2024.102814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Machine Learning models need large amounts of annotated data for training. In the field of medical imaging, labeled data is especially difficult to obtain because the annotations have to be performed by qualified physicians. Natural Language Processing (NLP) tools can be applied to radiology reports to extract labels for medical images automatically. Compared to manual labeling, this approach requires smaller annotation efforts and can therefore facilitate the creation of labeled medical image data sets. In this article, we summarize the literature on this topic spanning from 2013 to 2023, starting with a meta-analysis of the included articles, followed by a qualitative and quantitative systematization of the results. Overall, we found four types of studies on the extraction of labels from radiology reports: those describing systems based on symbolic NLP, statistical NLP, neural NLP, and those describing systems combining or comparing two or more of the latter. Despite the large variety of existing approaches, there is still room for further improvement. This work can contribute to the development of new techniques or the improvement of existing ones.
Collapse
Affiliation(s)
- Sofia C Pereira
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| | - Ana Maria Mendonça
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| | - Aurélio Campilho
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| | - Pedro Sousa
- Hospital Center of Vila Nova de Gaia/Espinho, Portugal.
| | - Carla Teixeira Lopes
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal; Faculty of Engineering of the University of Porto, Portugal.
| |
Collapse
|
3
|
Stember JN, Young RJ, Shalu H. Direct Evaluation of Treatment Response in Brain Metastatic Disease with Deep Neuroevolution. J Digit Imaging 2023; 36:536-546. [PMID: 36396839 PMCID: PMC10039135 DOI: 10.1007/s10278-022-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer centers have an urgent and unmet clinical and research need for AI that can guide patient management. A core component of advancing cancer treatment research is assessing response to therapy. Doing so by hand, for example, as per RECIST or RANO criteria, is tedious and time-consuming, and can miss important tumor response information. Most notably, the prevalent response criteria often exclude lesions, the non-target lesions, altogether. We wish to assess change in a holistic fashion that includes all lesions, obtaining simple, informative, and automated assessments of tumor progression or regression. Because genetic sub-types of cancer can be fairly specific and patient enrollment in therapy trials is often limited in number and accrual rate, we wish to make response assessments with small training sets. Deep neuroevolution (DNE) is a novel radiology artificial intelligence (AI) optimization approach that performs well on small training sets. Here, we use a DNE parameter search to optimize a convolutional neural network (CNN) that predicts progression versus regression of metastatic brain disease. We analyzed 50 pairs of MRI contrast-enhanced images as our training set. Half of these pairs, separated in time, qualified as disease progression, while the other 25 image pairs constituted regression. We trained the parameters of a CNN via "mutations" that consisted of random CNN weight adjustments and evaluated mutation "fitness" as summed training set accuracy. We then incorporated the best mutations into the next generation's CNN, repeating this process for approximately 50,000 generations. We applied the CNNs to our training set, as well as a separate testing set with the same class balance of 25 progression and 25 regression cases. DNE achieved monotonic convergence to 100% training set accuracy. DNE also converged monotonically to 100% testing set accuracy. We have thus shown that DNE can accurately classify brain metastatic disease progression versus regression. Future work will extend the input from 2D image slices to full 3D volumes, and include the category of "no change." We believe that an approach such as ours can ultimately provide a useful and informative complement to RANO/RECIST assessment and volumetric AI analysis.
Collapse
Affiliation(s)
- Joseph N Stember
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, NY, NY, 10065, USA.
| | - Robert J Young
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, NY, NY, 10065, USA
| | - Hrithwik Shalu
- Indian Institute of Technology Madras, Madras, Chennai, 600036, India
| |
Collapse
|