1
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
2
|
Ahmed S, Sultana S, Kundu S, Alam SS, Hossan T, Islam MA. Global Prevalence of Zika and Chikungunya Coinfection: A Systematic Review and Meta-Analysis. Diseases 2024; 12:31. [PMID: 38391778 PMCID: PMC10888207 DOI: 10.3390/diseases12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Zika virus (ZIKV) and chikungunya virus (CHIKV) are arthropod-borne viruses with significant pathogenicity, posing a substantial health and economic burden on a global scale. Moreover, ZIKV-CHIKV coinfection imposes additional therapeutic challenges as there is no specific treatment for ZIKV or CHIKV infection. While a growing number of studies have documented the ZIKV-CHIKV coinfection, there is currently a lack of conclusive reports on this coinfection. Therefore, we performed a systematic review and meta-analysis to determine the true statistics of ZIKV-CHIKV coinfection in the global human population. Relevant studies were searched for in PubMed, Scopus, and Google Scholar without limitation in terms of language or publication date. A total of 33 studies containing 41,460 participants were included in this meta-analysis. The study protocol was registered with PROSPERO under the registration number CRD42020176409. The pooled prevalence and confidence intervals of ZIKV-CHIKV coinfection were computed using a random-effects model. The study estimated a combined global prevalence rate of 1.0% [95% CI: 0.7-1.2] for the occurrence of ZIKV-CHIKV coinfection. The region of North America (Mexico, Haiti, and Nicaragua) and the country of Haiti demonstrated maximum prevalence rates of 2.8% [95% CI: 1.5-4.1] and 3.5% [95% CI: 0.2-6.8], respectively. Moreover, the prevalence of coinfection was found to be higher in the paediatric group (2.1% [95% CI: 0.0-4.2]) in comparison with the adult group (0.7% [95% CI: 0.2-1.1]). These findings suggest that the occurrence of ZIKV-CHIKV coinfection varies geographically and by age group. The results of this meta-analysis will guide future investigations seeking to understand the underlying reasons for these variations and the causes of coinfection and to develop targeted prevention and control strategies.
Collapse
Affiliation(s)
- Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shabiha Sultana
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shoumik Kundu
- Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway St., Lubbock, TX 79409, USA
| | - Sayeda Sadia Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women's Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Cremaschi RC, Bahi CAS, Paola AAVD, Arakaki JSO, Ferreira PRA, Bellei NCJ, Borges V, Coelho FMS. Neurological symptoms and comorbidity profile of hospitalized patients with COVID-19. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:146-154. [PMID: 36948200 PMCID: PMC10033191 DOI: 10.1055/s-0043-1761433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND The neurological manifestations in COVID-19 adversely impact acute illness and post-disease quality of life. Limited data exist regarding the association of neurological symptoms and comorbid individuals. OBJECTIVE To assess neurological symptoms in hospitalized patients with acute COVID-19 and multicomorbidities. METHODS Between June 2020 and July 2020, inpatients aged 18 or older, with laboratory-confirmed COVID-19, admitted to the Hospital São Paulo (Federal University of São Paulo), a tertiary referral center for high complexity cases, were questioned about neurological symptoms. The Composite Autonomic Symptom Score 31 (COMPASS-31) questionnaire was used. The data were analyzed as a whole and whether subjective olfactory dysfunction was present or not. RESULTS The mean age of the sample was 55 ± 15.12 years, and 58 patients were male. The neurological symptoms were mostly xerostomia (71%), ageusia/hypogeusia (50%), orthostatic intolerance (49%), anosmia/hyposmia (44%), myalgia (31%), dizziness (24%), xerophthalmia (20%), impaired consciousness (18%), and headache (16%). Furthermore, 91% of the patients had a premorbidity. The 44 patients with subjective olfactory dysfunction were more likely to have hypertension, diabetes, weakness, shortness of breath, ageusia/hypogeusia, dizziness, orthostatic intolerance, and xerophthalmia. The COMPASS-31 score was higher than that of previously published controls (14.85 ± 12.06 vs. 8.9 ± 8.7). The frequency of orthostatic intolerance was 49% in sample and 63.6% in those with subjective olfactory dysfunction (2.9-fold higher risk compared to those without). CONCLUSION A total of 80% of inpatients with multimorbidity and acute COVID-19 had neurological symptoms. Chemical sense and autonomic symptoms stood out. Orthostatic intolerance occurred in around two-thirds of the patients with anosmia/hyposmia. Hypertension and diabetes were common, mainly in those with anosmia/hyposmia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vanderci Borges
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Fernando Morgadinho Santos Coelho
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brazil
| |
Collapse
|
4
|
DePace NL, Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep 2022; 24:1711-1726. [PMID: 36178611 PMCID: PMC9524329 DOI: 10.1007/s11886-022-01786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Long-COVID syndrome is a multi-organ disorder that persists beyond 12 weeks post-acute SARS-CoV-2 infection (COVID-19). Here, we provide a definition for this syndrome and discuss neuro-cardiology involvement due to the effects of (1) angiotensin-converting enzyme 2 receptors (the entry points for the virus), (2) inflammation, and (3) oxidative stress (the resultant effects of the virus). RECENT FINDINGS These effects may produce a spectrum of cardio-neuro effects (e.g., myocardial injury, primary arrhythmia, and cardiac symptoms due to autonomic dysfunction) which may affect all systems of the body. We discuss the symptoms and suggest therapies that target the underlying autonomic dysfunction to relieve the symptoms rather than merely treating symptoms. In addition to treating the autonomic dysfunction, the therapy also treats chronic inflammation and oxidative stress. Together with a full noninvasive cardiac workup, a full assessment of the autonomic nervous system, specifying parasympathetic and sympathetic (P&S) activity, both at rest and in response to challenges, is recommended. Cardiac symptoms must be treated directly. Cardiac treatment is often facilitated by treating the P&S dysfunction. Cardiac symptoms of dyspnea, chest pain, and palpitations, for example, need to be assessed objectively to differentiate cardiac from neural (autonomic) etiology. Long-term myocardial injury commonly involves P&S dysfunction. P&S assessment usually connects symptoms of Long-COVID to the documented autonomic dysfunction(s).
Collapse
Affiliation(s)
- Nicholas L. DePace
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
| | - Joe Colombo
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
- CTO and Sr. Medical Director, Physio PS, Inc, Atlanta, GA USA
| |
Collapse
|
5
|
Anaya JM, Rojas M, Salinas ML, Rodríguez Y, Roa G, Lozano M, Rodríguez-Jiménez M, Montoya N, Zapata E, Monsalve DM, Acosta-Ampudia Y, Ramírez-Santana C. Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev 2021; 20:102947. [PMID: 34509649 PMCID: PMC8428988 DOI: 10.1016/j.autrev.2021.102947] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 01/08/2023]
Abstract
The existence of a variety of symptoms with a duration beyond the acute phase of COVID-19, is referred to as post-COVID syndrome (PCS). We aimed to report a series of patients with PCS attending a Post-COVID Unit and offer a comprehensive review on the topic. Adult patients with previously confirmed SARS-CoV-2 infection and PCS were systematically assessed through a semi-structured and validated survey. Total IgG, IgA and IgM serum antibodies to SARS-CoV-2 were evaluated by an electrochemiluminescence immunoassay. A systematic review of the literature and meta-analysis were conducted, following PRISMA guidelines. Univariate and multivariate methods were used to analyze data. Out of a total of 100 consecutive patients, 53 were women, the median of age was 49 years (IQR: 37.8–55.3), the median of post-COVID time after the first symptoms was 219 days (IQR: 143–258), and 65 patients were hospitalized during acute COVID-19. Musculoskeletal, digestive (i.e., diarrhea) and neurological symptoms including depression (by Zung scale) were the most frequent observed in PCS patients. A previous hospitalization was not associated with PCS manifestation. Arthralgia and diarrhea persisted in more than 40% of PCS patients. The median of anti-SARS-CoV-2 antibodies was 866.2 U/mL (IQR: 238.2–1681). Despite this variability, 98 patients were seropositive. Based on autonomic symptoms (by COMPASS 31) two clusters were obtained with different clinical characteristics. Levels of anti-SARS-CoV-2 antibodies were not different between clusters. A total of 40 articles (11,196 patients) were included in the meta-analysis. Fatigue/muscle weakness, dyspnea, pain and discomfort, anxiety/depression and impaired concentration were presented in more than 20% of patients reported. In conclusion, PCS is mainly characterized by musculoskeletal, pulmonary, digestive and neurological involvement including depression. PCS is independent of severity of acute illness and humoral response. Long-term antibody responses to SARS-CoV-2 infection and a high inter-individual variability were confirmed. Future studies should evaluate the mechanisms by which SARS-CoV-2 may cause PCS and the best therapeutic options.
Collapse
Affiliation(s)
- Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia
| | - Geraldine Roa
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Lozano
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Rodríguez-Jiménez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Elizabeth Zapata
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | -
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
6
|
Rodríguez Y, Anaya J. Comment on: Zika virus and Guillain-Barré syndrome in Bangladesh. Ann Clin Transl Neurol 2018; 5:1139. [PMID: 30250870 PMCID: PMC6144437 DOI: 10.1002/acn3.602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA)School of Medicine and Health SciencesUniversidad del RosarioBogotáColombia
| | - Juan‐Manuel Anaya
- Center for Autoimmune Diseases Research (CREA)School of Medicine and Health SciencesUniversidad del RosarioBogotáColombia
| |
Collapse
|
7
|
Abstract
INTRODUCTION Zika virus (ZIKV) disease is a vector-borne infectious disease transmitted by Aedes mosquitoes. Recently, ZIKV has caused outbreaks in most American countries. Areas covered: Publications about neurological complications of ZIKV infection retrieved from pubmed searchers were reviewed, and reference lists and relevant articles from review articles were also examined. Vertical/intrauterine transmission leads to congenital infection and causes microcephaly and congenital ZIKV syndrome. ZIKV preferentially infects human neural progenitor cells and triggers cell apoptosis. ZIKV RNA has been identified in foetal brain tissue and brains of microcephalic infants who died; amniotic fluid and placentas of pregnant mothers; and umbilical cord, cerebro-spinal fluid and meninges of newborns. The increase in the number of Guillain-Barre syndrome (GBS) cases during the ZIKV outbreak in the Americas provides epidemiological evidence for the link between ZIKV infection and GBS. Less frequently reported ZIKV neurological complications include encephalitis/meningoencephalitis, acute disseminated encephalomyelitis, myelitis, cerebrovascular complications (ischemic infarction; vasculopathy), seizures and encephalopathy, sensory polyneuropathy and sensory neuronopathy. Analysis of GBS incidence could serve as an epidemiological 'marker' or sentinel for ZIKV disease and other neurological complications associated to ZIKV. Expert commentary: An expanding spectrum of neurological complications associated with ZIKV infection is being recognised.
Collapse
Affiliation(s)
- Francisco Javier Carod-Artal
- a Neurology Department , Raigmore Hospital , Inverness , UK.,b International Master in Tropical Neurology , International University of Catalonia (UIC) , Barcelona , Spain
| |
Collapse
|
8
|
Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodríguez Y, Pacheco Y, Halstead S, Willison HJ, Anaya JM, Ramírez-Santana C. Autoimmune Neurological Conditions Associated With Zika Virus Infection. Front Mol Neurosci 2018; 11:116. [PMID: 29695953 PMCID: PMC5904274 DOI: 10.3389/fnmol.2018.00116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus rapidly spreading throughout the tropical Americas. Aedes mosquitoes is the principal way of transmission of the virus to humans. ZIKV can be spread by transplacental, perinatal, and body fluids. ZIKV infection is often asymptomatic and those with symptoms present minor illness after 3 to 12 days of incubation, characterized by a mild and self-limiting disease with low-grade fever, conjunctivitis, widespread pruritic maculopapular rash, arthralgia and myalgia. ZIKV has been linked to a number of central and peripheral nervous system injuries such as Guillain-Barré syndrome (GBS), transverse myelitis (TM), meningoencephalitis, ophthalmological manifestations, and other neurological complications. Nevertheless, mechanisms of host-pathogen neuro-immune interactions remain incompletely elucidated. This review provides a critical discussion about the possible mechanisms underlying the development of autoimmune neurological conditions associated with Zika virus infection.
Collapse
Affiliation(s)
- Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luis F Castillo-Medina
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Susan Halstead
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
9
|
Zika virus infection and autonomic symptoms. Clin Auton Res 2018. [DOI: 10.1007/s10286-018-0520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Autonomic dysfunction: a novel neurological phenotype associated with Zika virus infection? Clin Auton Res 2018; 28:161-163. [DOI: 10.1007/s10286-018-0516-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023]
|