1
|
Zhao X, Hussain MH, Mohsin A, Liu Z, Xu Z, Li Z, Guo W, Guo M. Mechanistic insight for improving butenyl-spinosyn production through combined ARTP/UV mutagenesis and ribosome engineering in Saccharopolyspora pogona. Front Bioeng Biotechnol 2024; 11:1329859. [PMID: 38292303 PMCID: PMC10825966 DOI: 10.3389/fbioe.2023.1329859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Butenyl-spinosyn is a highly effective, wide-spectrum and environmentally-friendly biological insecticide produced by Saccharopolyspora pogona. However, its scale-up is impeded due to its lower titer in wild-type strains. In this work, ARTP/UV mutagenesis and ribosome engineering were employed to enhance the butenyl-spinosyn production, and a stable mutant Saccharopolyspora pogona aG6 with high butenyl-spinosyn yield was successfully obtained. For the first time, the fermentation results in the 5 L bioreactor demonstrated that the butenyl-spinosyn produced by mutant Saccharopolyspora pogona aG6 reached the maximum value of 130 mg/L, almost 4-fold increase over the wild-type strain WT. Furthermore, comparative genomic, transcriptome and target metabolomic analysis revealed that the accumulation of butenyl-spinosyn was promoted by alterations in ribosomal proteins, branched-chain amino acid degradation and oxidative phosphorylation. Conclusively, the proposed model of ribosome engineering combined with ARTP/UV showed the improved biosynthesis regulation of butenyl-spinosyn in S. pogona.
Collapse
Affiliation(s)
- Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhixian Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhanxia Li
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqun Guo
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
3
|
Rang J, Xia Z, Shuai L, Cao L, Liu Y, Li X, Xie J, Li Y, Hu S, Xie Q, Xia L. A TetR family transcriptional regulator, SP_2854 can affect the butenyl-spinosyn biosynthesis by regulating glucose metabolism in Saccharopolyspora pogona. Microb Cell Fact 2022; 21:83. [PMID: 35568948 PMCID: PMC9107242 DOI: 10.1186/s12934-022-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involve in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently understanding its regulatory mechanism, and improving its production by metabolic engineering. Results Here, we identified a TetR family transcriptional regulator, SP_2854, that can positively regulate butenyl-spinosyn biosynthesis and affect strain growth, glucose consumption, and mycelial morphology in S. pogona. Using targeted metabolomic analyses, we found that SP_2854 overexpression enhanced glucose metabolism, while SP_2854 deletion had the opposite effect. To decipher the overproduction mechanism in detail, comparative proteomic analysis was carried out in the SP-2854 overexpressing mutant and the original strain, and we found that SP_2854 overexpression promoted the expression of proteins involved in glucose metabolism. Conclusion Our findings suggest that SP_2854 can affect strain growth and development and butenyl-spinosyn biosynthesis in S. pogona by controlling glucose metabolism. The strategy reported here will be valuable in paving the way for genetic engineering of regulatory elements in actinomycetes to improve important natural products production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01808-2.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaomin Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiao Xie
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
4
|
Liang M, Liu L, Xu F, Zeng X, Wang R, Yang J, Wang W, Karthik L, Liu J, Yang Z, Zhu G, Wang S, Bai L, Tong Y, Liu X, Wu M, Zhang LX, Tan GY. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach. Nucleic Acids Res 2022; 50:3581-3592. [PMID: 35323947 PMCID: PMC8989516 DOI: 10.1093/nar/gkac181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022] Open
Abstract
Direct cloning of biosynthetic gene clusters (BGCs) from microbial genomes facilitates natural product-based drug discovery. Here, by combining Cas12a and the advanced features of bacterial artificial chromosome library construction, we developed a fast yet efficient in vitro platform for directly capturing large BGCs, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). As demonstrations, several large BGCs from different actinomycetal genomic DNA samples were efficiently captured by CAT-FISHING, the largest of which was 145 kb with 75% GC content. Furthermore, the directly cloned, 110 kb long, cryptic polyketide encoding BGC from Micromonospora sp. 181 was then heterologously expressed in a Streptomyces chassis. It turned out to be a new macrolactam compound, marinolactam A, which showed promising anticancer activity. Our results indicate that CAT-FISHING is a powerful method for complicated BGC cloning, and we believe that it would be an important asset to the entire community of natural product-based drug discovery.
Collapse
Affiliation(s)
- Mindong Liang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Leshi Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ruijun Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jinling Yang
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiakun Liu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuliu Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Xin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Effect of pII key nitrogen regulatory gene on strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Appl Microbiol Biotechnol 2022; 106:3081-3091. [PMID: 35376972 DOI: 10.1007/s00253-022-11902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
PII signal transduction proteins are widely found in bacteria and plant chloroplast, and play a central role in nitrogen metabolism regulation, which interact with many key proteins in metabolic pathways to regulate carbon/nitrogen balance by sensing changes in concentrations of cell-mediated indicators such as α-ketoglutarate. In this study, the knockout strain Saccharopolyspora pogona-ΔpII and overexpression strain S. pogona-pII were constructed using CRISPR/Cas9 technology and the shuttle vector POJ260, respectively, to investigate the effects on the growth and secondary metabolite biosynthesis of S. pogona. Growth curve, electron microscopy, and spore germination experiments were performed, and it was found that the deletion of the pII gene inhibited the growth to a certain extent in the mutant. HPLC analysis showed that the yield of butenyl-spinosyn in the S. pogona-pII strain increased to 245% than that in the wild-type strain while that in S. pogona-ΔpII decreased by approximately 51%. This result showed that the pII gene can promote the growth and butenyl-spinosyn biosynthesis of S. pogona. This research first investigated PII nitrogen metabolism regulators in S. pogona, providing significant scientific evidence and a research basis for elucidating the mechanism by which these factors regulate the growth of S. pogona, optimizing the synthesis network of butenyl-spinosyn and constructing a strain with a high butenyl-spinosyn yield. KEY POINTS: • pII key nitrogen regulatory gene deletion can inhibit the growth and development of S. pogona. • Overexpressed pII gene can significantly promote the butenyl-spinosyn biosynthesis. • pII gene can affect the amino acid circulation and the accumulation of butenyl-spinosyn precursors in S. pogona.
Collapse
|
6
|
Rang J, Cao L, Shuai L, Liu Y, Zhu Z, Xia Z, Jin D, Sun Y, Yu Z, Hu S, Xie Q, Xia L. Promoting Butenyl-spinosyn Production Based on Omics Research and Metabolic Network Construction in Saccharopolyspora pogona. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3557-3567. [PMID: 35245059 DOI: 10.1021/acs.jafc.2c00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the metabolism of Saccharopolyspora pogona on a global scale is essential for manipulating its metabolic capabilities to improve butenyl-spinosyn biosynthesis. Here, we combined multiomics analysis to parse S. pogona genomic information, construct a metabolic network, and mine important functional genes that affect the butenyl-spinosyn biosynthesis. This research not only elucidated the relationship between butenyl-spinosyn biosynthesis and the primary metabolic pathway but also showed that the low expression level and continuous downregulation of the bus cluster and the competitive utilization of acetyl-CoA were the main reasons for reduced butenyl-spinosyn production. Our framework identified 148 genes related to butenyl-spinosyn biosynthesis that were significantly differentially expressed, confirming that butenyl-spinosyn polyketide synthase (PKS) and succinic semialdehyde dehydrogenase (GabD) play an important role in regulating butenyl-spinosyn biosynthesis. Combined modification of these genes increased overall butenyl-spinosyn production by 6.38-fold to 154.1 ± 10.98 mg/L. Our results provide an important strategy for further promoting the butenyl-spinosyn titer.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
7
|
Rang J, Li Y, Cao L, Shuai L, Liu Y, He H, Wan Q, Luo Y, Yu Z, Zhang Y, Sun Y, Ding X, Hu S, Xie Q, Xia L. Deletion of a hybrid NRPS-T1PKS biosynthetic gene cluster via Latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl-spinosyn biosynthesis and growth development. Microb Biotechnol 2021; 14:2369-2384. [PMID: 33128503 PMCID: PMC8601190 DOI: 10.1111/1751-7915.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
Butenyl-spinosyn, a promising biopesticide produced by Saccharopolyspora pogona, exhibits stronger insecticidal activity and a broader pesticidal spectrum. However, its titre in the wild-type S. pogona strain is too low to meet the industrial production requirements. Deletion of non-target natural product biosynthetic gene clusters resident in the genome of S. pogona could reduce the consumption of synthetic precursors, thereby promoting the biosynthesis of butenyl-spinosyn. However, it has always been a challenge for scientists to genetically engineer S. pogona. In this study, the Latour gene knockout system (linear DNA fragment recombineering system) was established in S. pogona. Using the Latour system, a hybrid NRPS-T1PKS cluster (˜20 kb) which was responsible for phthoxazolin biosynthesis was efficiently deleted in S. pogona. The resultant mutant S. pogona-Δura4-Δc14 exhibited an extended logarithmic phase, increased biomass and a lower glucose consumption rate. Importantly, the production of butenyl-spinosyn in S. pogona-Δura4-Δc14 was increased by 4.72-fold compared with that in the wild-type strain. qRT-PCR analysis revealed that phthoxazolin biosynthetic gene cluster deletion could promote the expression of the butenyl-spinosyn biosynthetic gene cluster. Furthermore, a TetR family transcriptional regulatory gene that could regulate the butenyl-spinosyn biosynthesis has been identified from the phthoxazolin biosynthetic gene cluster. Because dozens of natural product biosynthetic gene clusters exist in the genome of S. pogona, the strategy reported here will be used to further promote the production of butenyl-spinosyn by deleting other secondary metabolite synthetic gene clusters.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of ResourcesCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangsha410081China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Qianqian Wan
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yuewen Luo
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China)National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of ResourcesCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangsha410081China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular BiologyState Key Laboratory of Development Biology of Freshwater FishCollege of Life ScienceHunan Normal UniversityChangsha410081China
| |
Collapse
|
8
|
Tang J, He H, Li Y, Liu Z, Xia Z, Cao L, Zhu Z, Shuai L, Liu Y, Wan Q, Luo Y, Zhang Y, Rang J, Xia L. Comparative Proteomics Reveals the Effect of the Transcriptional Regulator Sp13016 on Butenyl-Spinosyn Biosynthesis in Saccharopolyspora pogona. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12554-12565. [PMID: 34657420 DOI: 10.1021/acs.jafc.1c03654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Butenyl-spinosyn is a highly effective and broad-spectrum biopesticide produced by Saccharopolyspora pogona. However, the yield of this compound is difficult to increase because the regulatory mechanism of secondary metabolism is still unknown. Here, the transcriptional regulator Sp13016 was discovered to be highly associated with butenyl-spinosyn synthesis and bacterial growth. Overexpression of sp13016 improved butenyl-spinosyn production to a level that was 2.84-fold that of the original strain, while deletion of sp13016 resulted in a significant decrease in yield and growth inhibition. Comparative proteomics revealed that these phenotypic changes were attributed to the influence of Sp13016 on the central carbon metabolism pathway to regulate the supply of precursors. Our research helps to reveal the regulatory mechanism of butenyl-spinosyn biosynthesis and provides a reference for increasing the yield of natural products of Actinomycetes.
Collapse
Affiliation(s)
- Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Qianqian Wan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Yuewen Luo
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| |
Collapse
|
9
|
He H, Tang J, Chen J, Hu J, Zhu Z, Liu Y, Shuai L, Cao L, Liu Z, Xia Z, Ding X, Hu S, Zhang Y, Rang J, Xia L. Flaviolin-Like Gene Cluster Deletion Optimized the Butenyl-Spinosyn Biosynthesis Route in Saccharopolyspora pogona. ACS Synth Biol 2021; 10:2740-2752. [PMID: 34601869 DOI: 10.1021/acssynbio.1c00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reduction and optimization of the microbial genome is an important strategy for constructing synthetic biological chassis cells and overcoming obstacles in natural product discovery and production. However, it is of great challenge to discover target genes that can be deleted and optimized due to the complicated genome of actinomycetes. Saccharopolyspora pogona can produce butenyl-spinosyn during aerobic fermentation, and its genome contains 32 different gene clusters. This suggests that there is a large amount of potential competitive metabolism in S. pogona, which affects the biosynthesis of butenyl-spinosyn. By analyzing the genome of S. pogona, six polyketide gene clusters were identified. From those, the complete deletion of clu13, a flaviolin-like gene cluster, generated a high butenyl-spinosyn-producing strain. Production of this strain was 4.06-fold higher than that of the wildtype strain. Transcriptome profiling revealed that butenyl-spinosyn biosynthesis was not primarily induced by the polyketide synthase RppA-like but was related to hypothetical protein Sp1764. However, the repression of sp1764 was not enough to explain the enormous enhancement of butenyl-spinosyn yields in S. pogona-Δclu13. After the comparative proteomic analysis of S. pogona-Δclu13 and S. pogona, two proteins, biotin carboxyl carrier protein (BccA) and response regulator (Reg), were investigated, whose overexpression led to great advantages of butenyl-spinosyn biosynthesis. In this way, we successfully discovered three key genes that obviously optimize the biosynthesis of butenyl-spinosyn. Gene cluster simplification performed in conjunction with multiomics analysis is of great practical significance for screening dominant chassis strains and optimizing secondary metabolism. This work provided an idea about screening key factors and efficient construction of production strains.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410083, China
| |
Collapse
|
10
|
Tang J, Zhu Z, He H, Liu Z, Xia Z, Chen J, Hu J, Cao L, Rang J, Shuai L, Liu Y, Sun Y, Ding X, Hu S, Xia L. Bacterioferritin: a key iron storage modulator that affects strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Microb Cell Fact 2021; 20:157. [PMID: 34391414 PMCID: PMC8364703 DOI: 10.1186/s12934-021-01651-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Butenyl-spinosyn, produced by Saccharopolyspora pogona, is a promising biopesticide due to excellent insecticidal activity and broad pesticidal spectrum. Bacterioferritin (Bfr, encoded by bfr) regulates the storage and utilization of iron, which is essential for the growth and metabolism of microorganisms. However, the effect of Bfr on the growth and butenyl-spinosyn biosynthesis in S. pogona has not been explored. Results Here, we found that the storage of intracellular iron influenced butenyl-spinosyn biosynthesis and the stress resistance of S. pogona, which was regulated by Bfr. The overexpression of bfr increased the production of butenyl-spinosyn by 3.14-fold and enhanced the tolerance of S. pogona to iron toxicity and oxidative damage, while the knockout of bfr had the opposite effects. Based on the quantitative proteomics analysis and experimental verification, the inner mechanism of these phenomena was explored. Overexpression of bfr enhanced the iron storage capacity of the strain, which activated polyketide synthase genes and enhanced the supply of acyl-CoA precursors to improve butenyl-spinosyn biosynthesis. In addition, it induced the oxidative stress response to improve the stress resistance of S. pogona. Conclusion Our work reveals the role of Bfr in increasing the yield of butenyl-spinosyn and enhancing the stress resistance of S. pogona, and provides insights into its enhancement on secondary metabolism, which provides a reference for optimizing the production of secondary metabolites in actinomycetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01651-x.
Collapse
Affiliation(s)
- Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
11
|
Li S, Yang B, Tan GY, Ouyang LM, Qiu S, Wang W, Xiang W, Zhang L. Polyketide pesticides from actinomycetes. Curr Opin Biotechnol 2021; 69:299-307. [PMID: 34102376 DOI: 10.1016/j.copbio.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Natural product derived pesticides have increased in popularity worldwide because of their high efficacy, eco-friendly nature and favorable safety profile. The development of polyketide pesticides from actinomycetes reflects this increase in popularity in the past decades. These pesticides, which include avermectins, spinosyns, polynactins, tetramycin and their analogues, have been successfully applied in crop protection. Moreover, the advance of biotechnology has led to continuous improvement in the discovery and production processes. In this review, we summarize these polyketide pesticides, their activities and provide insight into their development. We also discuss engineering strategies and the current status of industrial production for these pesticides. Given that actinomycetes are known to produce a wide range of bioactive secondary metabolites, the description of pesticide development and high yield strain improvement presented herein will facilitate further development of these valuable polyketide pesticides from actinomycetes.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiwen Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Rang J, Zhu Z, Li Y, Cao L, He H, Tang J, Hu J, Chen J, Hu S, Huang W, Yu Z, Ding X, Sun Y, Xie Q, Xia L. Identification of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Appl Microbiol Biotechnol 2021; 105:1519-1533. [PMID: 33484320 DOI: 10.1007/s00253-021-11105-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.
Collapse
Affiliation(s)
- Jie Rang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weitao Huang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziquan Yu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
13
|
Song C, Luan J, Li R, Jiang C, Hou Y, Cui Q, Cui T, Tan L, Ma Z, Tang YJ, Stewart AF, Fu J, Zhang Y, Wang H. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Res 2021; 48:e130. [PMID: 33119745 PMCID: PMC7736807 DOI: 10.1093/nar/gkaa956] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.
Collapse
Affiliation(s)
- Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yu Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Long Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zaichao Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
14
|
He H, Peng S, Yuan S, Tang J, Liu Z, Rang J, Xia Z, Hu J, Chen J, Ding X, Hu S, Sun Y, Xia L. Effects of lytS-L on the primary metabolism and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Gene 2020; 766:145130. [PMID: 32911030 DOI: 10.1016/j.gene.2020.145130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
The LytTR family two-component system widely exists in bacterial cells and plays an important role in metabolic regulation. The lytS-L gene that encodes for a LytTR family sensor kinase was knocked out to study its influence on the growth, phenotype, and the biosynthesis of the insecticidal polyketide butenyl-spinosyn in Saccharopolyspora pogona NRRL 30141 (S. pogona). High performance liquid chromatography (HPLC) results showed that the butenyl-spinosyn yield of the lytS-L knockout mutant decreased by 58.9% compared with that of the parental strain. This is manifested by a weak toxicity of the mutant against the insect Helicoverpa assulta (H. armigera). Comparative proteomic analysis revealed the expression characteristics of the proteins in S. pogona and S. pogona-ΔlytS-L: a total of 14 proteins involved in energy metabolism were down-regulated, 9 proteins related to carbon metabolism such as glycolysis, and tricarboxylic acid cycle (TCA) were up-regulated, while 13 proteins involved in the biosynthesis of butenyl-spinosyn were down-regulated (fold change >1.2 or< 0.83). The qRT-PCR (Quantitative Real-time PCR) analysis illustrated that the changes in the expression levels of transcription and translation of the identified genes were consistent. This study explores the function of the two-component system of the LytTR family in S. pogona and shows that the lytS-L gene has an important influence on regulating primary metabolism and butenyl-spinosyn biosynthesis of S. pogona.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengnan Peng
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
15
|
|
16
|
Rang J, He H, Chen J, Hu J, Tang J, Liu Z, Xia Z, Ding X, Zhang Y, Xia L. SenX3-RegX3, an Important Two-Component System, Regulates Strain Growth and Butenyl-spinosyn Biosynthesis in Saccharopolyspora pogona. iScience 2020; 23:101398. [PMID: 32768668 PMCID: PMC7414002 DOI: 10.1016/j.isci.2020.101398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/31/2023] Open
Abstract
Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficient understanding of its regulatory mechanism and improving its production by metabolic engineering. Here, we present data supporting a role of the SenX3-RegX3 system in regulating the butenyl-spinosyn biosynthesis. EMSAs and qRT-PCR demonstrated that RegX3 positively controls butenyl-spinosyn production in an indirect way. Integrated proteomic and metabolomic analysis, regX3 deletion not only strengthens the basal metabolic ability of S. pogona in the mid-growth phase but also promotes the flow of the acetyl-CoA produced via key metabolic pathways into the TCA cycle rather than the butenyl-spinosyn biosynthetic pathway, which ultimately leads to continued growth but reduced butenyl-spinosyn production. The strategy demonstrated here may be valuable for revealing the regulatory role of the SenX3-RegX3 system in the biosynthesis of other natural products. Butenyl-spinosyn biosynthesis is highly sensitive to Pi control RegX3 regulates polyP accumulation in S. pogona RegX3 may indirectly regulate butenyl-spinosyn production RegX3 plays an important role in the normal growth development of S. pogona
Collapse
Affiliation(s)
- Jie Rang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Jianming Chen
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Jinjuan Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Zhudong Liu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Ziyuan Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Youming Zhang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, China.
| |
Collapse
|
17
|
Abstract
Abstract
Purpose
This study aimed to analyze the complete genome sequence of the butenyl-spinosyn-producing strain Saccharopolyspora sp. ASAGF58, isolated from Zhejiang province.
Methods
PacBio RS II sequencing platform with single-molecule real-time technology was used to obtain the complete genome sequence of Saccharopolyspora sp. ASAGF58. Gene prediction and annotation analysis were carried out through several software and databases. The antiSMASH online server was used to evaluate the secondary metabolite potential of strain ASAGF58.
Results
The whole genome of Saccharopolyspora sp. ASAGF58 is 8,190,340 bp divided into one chromosome of 8,044,361 bp with a GC content of 68.1% and a plasmid of 145,979 bp with a GC content of 64.6%. A total of 7486 coding sequences, 15 rRNA genes, 61 tRNA genes, 41 miscRNA genes, and 1 tmRNA gene were predicted. The domains encoded by one of the type I polyketide synthase (T1PKS) gene clusters have 91% similarity with those encoded by a spinosad biosynthetic gene cluster from Saccharopolyspora spinosa. In addition, antiSMASH results predicted that the strain also contains the biosynthetic gene clusters for the synthesis of ectoine, geosmin, and erythreapeptin.
Conclusions
Our data revealed the complete genome sequence of a new isolated butenyl-spinosyn-producing strain. This work will provide some methods, from genetics to biotechnology and biochemistry, aimed at the production improvement of butenyl-spinosyns.
Collapse
|
18
|
Rang J, He H, Yuan S, Tang J, Liu Z, Xia Z, Khan TA, Hu S, Yu Z, Hu Y, Sun Y, Huang W, Ding X, Xia L. Deciphering the Metabolic Pathway Difference Between Saccharopolyspora pogona and Saccharopolyspora spinosa by Comparative Proteomics and Metabonomics. Front Microbiol 2020; 11:396. [PMID: 32256469 PMCID: PMC7093602 DOI: 10.3389/fmicb.2020.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Butenyl-spinosyn, a secondary metabolite produced by Saccharopolyspora pogona, exhibits strong insecticidal activity than spinosyn. However, the low synthesis capacity and unknown metabolic characteristics of butenyl-spinosyn in wild-type S. pogona limit its broad application and metabolic engineering. Here, we showed that S. pogona exhibited increased glucose consumption ability and growth rate compared with S. spinosa, but the production of butenyl-spinosyn was much lower than that of spinosyn. To further elucidate the metabolic mechanism of these different phenotypes, we performed a comparative proteomic and metabolomic study on S. pogona and S. spinosa to identify the change in the abundance levels of proteins and metabolites. We found that the abundance of most proteins and metabolites associated with glucose transport, fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine and pyrimidine metabolism, and target product biosynthesis in S. pogona was higher than that in S. spinosa. However, the overall abundance of proteins involved in butenyl-spinosyn biosynthesis was much lower than that of the high-abundance protein chaperonin GroEL, such as the enzymes related to rhamnose synthesis. We speculated that these protein and metabolite abundance changes may be directly responsible for the above phenotypic changes in S. pogona and S. spinosa, especially affecting butenyl-spinosyn biosynthesis. Further studies revealed that the over-expression of the rhamnose synthetic genes and methionine adenosyltransferase gene could effectively improve the production of butenyl-spinosyn by 2.69- and 3.03-fold, respectively, confirming the reliability of this conjecture. This work presents the first comparative proteomics and metabolomics study of S. pogona and S. spinosa, providing new insights into the novel links of phenotypic change and metabolic difference between two strains. The result will be valuable in designing strategies to promote the biosynthesis of butenyl-spinosyn by metabolic engineering.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tahir Ali Khan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Weitao Huang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
He H, Yuan S, Hu J, Chen J, Rang J, Tang J, Liu Z, Xia Z, Ding X, Hu S, Xia L. Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona. Microb Cell Fact 2020; 19:27. [PMID: 32046731 PMCID: PMC7011500 DOI: 10.1186/s12934-020-01299-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Saccharopolyspora pogona is a prominent industrial strain due to its production of butenyl-spinosyn, a high-quality insecticide against a broad spectrum of insect pests. TetR family proteins are diverse in a tremendous number of microorganisms and some are been researched to have a key role in metabolic regulation. However, specific functions of TetR family proteins in S. pogona are yet to characterize. Results In the present study, the overexpression of the tetR-like gene sp1418 in S. pogona resulted in marked effects on vegetative growth, sporulation, butenyl-spinosyn biosynthesis, and oxidative stress. By using qRT-PCR analysis, mass spectrometry, enzyme activity detection, and sp1418 knockout verification, we showed that most of these effects could be attributed to the overexpression of Sp1418, which modulated enzymes related to the primary metabolism, oxidative stress and secondary metabolism, and thereby resulted in distinct growth characteristics and an unbalanced supply of precursor monomers for butenyl-spinosyn biosynthesis. Conclusion This study revealed the function of Sp1418 and enhanced the understanding of the metabolic network in S. pogona, and provided insights into the improvement of secondary metabolite production.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
20
|
Li L, Gong L, He H, Liu Z, Rang J, Tang J, Peng S, Yuan S, Ding X, Yu Z, Xia L, Sun Y. AfsR is an important regulatory factor for growth and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01473-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
21
|
Li L, Rang J, He H, He S, Liu Z, Tang J, Xiao J, He L, Hu S, Yu Z, Ding X, Xia L. Impact on strain growth and butenyl-spinosyn biosynthesis by overexpression of polynucleotide phosphorylase gene in Saccharopolyspora pogona. Appl Microbiol Biotechnol 2018; 102:8011-8021. [DOI: 10.1007/s00253-018-9178-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/15/2023]
|
22
|
Dai P, Wang CX, Gao H, Wang QZ, Tang XL, Chen GD, Hong K, Hu D, Yao XS. Characterization of Methyltransferase AlmCII in Chalcomycin Biosynthesis: The First TylF Family O-Methyltransferase Works on a 4'-Deoxysugar. Chembiochem 2017; 18:1510-1517. [PMID: 28488816 DOI: 10.1002/cbic.201700216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/11/2022]
Abstract
Sugar O-methylation is a ubiquitous modification in natural products and plays diverse roles. This realization has inspired many attempts to search for novel methyltransferases. Chalcomycins are a group of 16-membered macrolides containing two methylated sugars that require three methyltransferases for their biosynthesis. Here, we identified that AlmCII, a sugar O-methyltransferase belonging to the TylF family that was previously only known to methylate sugars with a 4'-hydroxy group, can methylate a 4',6'-dideoxysugar during the biosynthesis of chalcomycins. An in vitro enzymatic assay revealed that AlmCII is divalent metal-dependent with an optimal pH of 8.0 and optimal temperature of 42 °C. Moreover, the 3'-O-demethylated chalcomycins exhibit less than 6 % of the antibacterial activity of their parent compounds. This is the first report demonstrating that a TylF family O-methyltransferase can use a 4'-deoxy sugar as a substrate and highlighting the importance of this methylation for the antibacterial activity of chalcomycins.
Collapse
Affiliation(s)
- Ping Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Qiao-Zhen Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Xiao-Long Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, No.345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, P. R. China
| |
Collapse
|
23
|
Guojun Y, Yuping H, Yan J, Kaichun L, Haiyang X. A New Medium for Improving Spinosad Production by Saccharopolyspora spinosa. Jundishapur J Microbiol 2016; 9:e16765. [PMID: 27635207 PMCID: PMC5013548 DOI: 10.5812/jjm.16765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Spinosad (a mixture of spinosyns A and D) is a unique natural pesticide produced by Saccharopolyspora spinosa. With regard to attempts to improve S. spinosa by classical mutagenesis, we propose that the bottleneck of screening out high-spinosad-production strains is probably caused by the fermentation media. OBJECTIVES The current study aimed to identify a new medium to extensively investigate the potential of S. spinosa strains to produce spinosad. MATERIALS AND METHODS Statistical and regressive modeling methods were used to investigate the effects of the carbon source and to optimize the production media. RESULTS The spinosad production of S. spinosa Co121 increased 77.13%, from 310.44 ± 21.84 μg/mL in the initial fermentation medium (with glucose as the main carbon source) to 549.89 ± 38.59 μg/mL in a new optimized fermentation medium (98.0 g of mannitol, 43.0 g of cottonseed flour, 12.9 g of corn steep liquor, 0.5 g of KH2PO4, and 3.0 g of CaCO3 in 1 L of H2O; pH was adjusted to 7.0 before autoclaving). After screening 4,000 strains, an overall 3.33-fold increase was observed in spinosad titers, starting from the parental strain Co121 in the original fermentation medium and ending with the mutant strain J78 (1035 ± 34 μg/mL) in the optimized medium. CONCLUSIONS The optimized fermentation medium developed in this study can probably be used to improve spinosad production in screening industrial strains of S. spinosa.
Collapse
Affiliation(s)
- Yang Guojun
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
| | - He Yuping
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jiang Yan
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
| | - Lin Kaichun
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xia Haiyang
- Hubei Nature’s Favor Biotechnology, Hanchuan, Hubei, People’s Republic of China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Key laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Natural product derived insecticides: discovery and development of spinetoram. ACTA ACUST UNITED AC 2016; 43:185-93. [DOI: 10.1007/s10295-015-1710-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
Abstract
This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains.
Collapse
|
25
|
Bernard SM, Akey DL, Tripathi A, Park SR, Konwerski JR, Anzai Y, Li S, Kato F, Sherman DH, Smith JL. Structural basis of substrate specificity and regiochemistry in the MycF/TylF family of sugar O-methyltransferases. ACS Chem Biol 2015; 10:1340-51. [PMID: 25692963 DOI: 10.1021/cb5009348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates, show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homologue, active site residues were identified that correlate with the 3' or 4' specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. This classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.
Collapse
Affiliation(s)
- Steffen M. Bernard
- Chemical
Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David L. Akey
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashootosh Tripathi
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sung Ryeol Park
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jamie R. Konwerski
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yojiro Anzai
- Faculty
of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shengying Li
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fumio Kato
- Faculty
of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - David H. Sherman
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janet L. Smith
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Fage CD, Isiorho EA, Liu Y, Wagner DT, Liu HW, Keatinge-Clay AT. The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nat Chem Biol 2015; 11:256-8. [PMID: 25730549 PMCID: PMC4366278 DOI: 10.1038/nchembio.1768] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/13/2015] [Indexed: 11/23/2022]
Abstract
In the biosynthetic pathway of the spinosyn insecticides, the tailoring enzyme SpnF performs a [4 + 2] cycloaddition on a 22-membered macrolactone to forge an embedded cyclohexene ring. To learn more about this reaction, which could potentially proceed through a Diels-Alder mechanism, we determined the 1.50-Å-resolution crystal structure of SpnF bound to S-adenosylhomocysteine. This sets the stage for advanced experimental and computational studies to determine the precise mechanism of SpnF-mediated cyclization.
Collapse
Affiliation(s)
- Christopher D Fage
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Eta A Isiorho
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Yungnan Liu
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Drew T Wagner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Hung-wen Liu
- 1] Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA. [2] Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Adrian T Keatinge-Clay
- 1] Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA. [2] Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Tietze LF, Dietz S, Schützenmeister N, Biller S, Hierold J, Scheffer T, Baag MM. Selective Glycosylation with the Amino SugarD-Forosamine for the Synthesis of Spinosyns and Its Analogues. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Tietze LF, Schützenmeister N, Grube A, Scheffer T, Baag MM, Granitzka M, Stalke D. Synthesis of Spinosyn Analogues for Modern Crop Protection. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Bioactive Natural Products as Potential Candidates to Control Aedes aegypti, the Vector of Dengue. STUDIES IN NATURAL PRODUCTS CHEMISTRY VOLUME 37 2012. [DOI: 10.1016/b978-0-444-59514-0.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Akey DL, Li S, Konwerski JR, Confer LA, Bernard SM, Anzai Y, Kato F, Sherman DH, Smith JL. A new structural form in the SAM/metal-dependent o‑methyltransferase family: MycE from the mycinamicin biosynthetic pathway. J Mol Biol 2011; 413:438-50. [PMID: 21884704 PMCID: PMC3193595 DOI: 10.1016/j.jmb.2011.08.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 01/07/2023]
Abstract
O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-L-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-L-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.
Collapse
Affiliation(s)
- David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shengying Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | | | - Laura A. Confer
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Steffen M. Bernard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Fumio Kato
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109,Correspondence: (734) 615-9564, Fax: (734) 763-6492
| |
Collapse
|
31
|
Kirst HA. The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot (Tokyo) 2010; 63:101-11. [DOI: 10.1038/ja.2010.5] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, Edwards PMR, Graupner PR. Discovery of the butenyl-spinosyn insecticides: Novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorg Med Chem 2009; 17:4185-96. [DOI: 10.1016/j.bmc.2009.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
|
33
|
Huang KX, Xia L, Zhang Y, Ding X, Zahn JA. Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol 2009; 82:13-23. [DOI: 10.1007/s00253-008-1784-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 10/21/2022]
|
34
|
Abstract
Microbes have made a phenomenal contribution to the health and well-being of people throughout the world. In addition to producing many primary metabolites, such as amino acids, vitamins and nucleotides, they are capable of making secondary metabolites, which constitute half of the pharmaceuticals on the market today and provide agriculture with many essential products. This review centers on these beneficial secondary metabolites, the discovery of which goes back 80 years to the time when penicillin was discovered by Alexander Fleming.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
35
|
Kelly WL. Intramolecular cyclizations of polyketide biosynthesis: mining for a "Diels-Alderase"? Org Biomol Chem 2008; 6:4483-93. [PMID: 19039353 DOI: 10.1039/b814552k] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the large number of naturally occurring metabolites existing for which enzymatic Diels-Alder reactions have been proposed as a key biosynthetic step, the actual number of enzymes thus far identified for these transformations is incredibly low. Even for those few enzymes identified, there is currently little biochemical or mechanistic evidence to support the label of a "Diels-Alderase." For several families of polyketide metabolites, the transformation in question introduces a rigid, cross-linked scaffold, leaving the remaining peripheral modifications and polyketide processing to provide the variation among the related metabolites. A detailed understanding of these modifications--how they are introduced and the tolerance of enzymes involved for alternate substrates--will strengthen biosynthetic engineering efforts toward related designer metabolites. This review addresses intramolecular cyclizations that appear to be consistent with enzymatic Diels-Alder transformations for which either the responsible enzyme has been identified or the respective biosynthetic gene cluster for the metabolite in question has been elucidated.
Collapse
Affiliation(s)
- Wendy L Kelly
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
36
|
Huang KX, Zahn J, Han L. SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4'-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A. J Ind Microbiol Biotechnol 2008; 35:1669-76. [PMID: 18704529 DOI: 10.1007/s10295-008-0431-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Deoxysugar, 2', 3', 4'-tri-O-methylrhamnose is an essential structural component of spinosyn A and D, which are the active ingredients of the commercial insect control agent, Spinosad. The spnH gene, which was previously assigned as a rhamnose O-methyltransferase based on gene sequence homology, was cloned from the wild-type Saccharopolyspora spinosa and from a spinosyn K-producing mutant that was defective in the 4'-O-methylation of 2', 3'-tri-O-methylrhamnose. DNA sequencing confirmed a mutation resulting in an amino acid substitution of G-165 to A-165 in the rhamnosyl 4'-O-methyltransferase of the mutant strain, and the subsequent sequence analysis showed that the mutation occurred in a highly conserved region of the translated amino acid sequence. Both spnH and the gene defective in 4'-O-methylation activity (spnH165A) were expressed heterologously in E. coli and were then purified to homogeneity using a His-tag affinity column. Substrate bioconversion studies showed that the enzyme encoded by spnH, but not spnH165A, could utilize spinosyn K as a substrate. When the wild-type spnH gene was transformed into the spinosyn K-producing mutant, spinosyn A production was restored. These results establish that the enzyme encoded by the spnH gene in wild-type S. spinosa is a rhamnosyl 4'-O-methyltransferase that is responsible for the final rhamnosyl methylation step in the biosynthesis of spinosyn A.
Collapse
Affiliation(s)
- Ke-xue Huang
- Key Lab of Microbial Molecular Biology of Hunan Province, College of Life Science, Hunan Normal University, 410081, Changsha, China.
| | | | | |
Collapse
|
37
|
Hong L, Zhao Z, Melançon CE, Zhang H, Liu HW. In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. J Am Chem Soc 2008; 130:4954-67. [PMID: 18345667 DOI: 10.1021/ja0771383] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S) from the spinosyn gene cluster thought to be involved in the conversion of TDP-4-keto-6-deoxy-D-glucose to TDP-D-forosamine were cloned and heterologously expressed, and the corresponding proteins were purified and their activities examined in vitro. Previous work demonstrated that SpnQ functions as a pyridoxamine 5'-monophosphate (PMP)-dependent 3-dehydrase which, in the presence of the cellular reductase pairs ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase, catalyzes C-3 deoxygenation of TDP-4-keto-2,6-dideoxy-D-glucose. It was also established that SpnR functions as a transaminase which converts the SpnQ product, TDP-4-keto-2,3,6-trideoxy-D-glucose, to TDP-4-amino-2,3,4,6-tetradeoxy-D-glucose. The results presented here provide a full account of the characterization of SpnR and SpnQ and reveal that SpnO and SpnN functions as a 2,3-dehydrase and a 3-ketoreductase, respectively. These two enzymes act sequentially to catalyze C-2 deoxygenation of TDP-4-keto-6-deoxy-D-glucose to form the SpnQ substrate, TDP-4-keto-2,6-dideoxy-D-glucose. Evidence has also been obtained to show that SpnS functions as the 4-dimethyltransferase that converts the SpnR product to TDP-D-forosamine. Thus, the biochemical functions of the five enzymes involved in TDP-D-forosamine formation have now been fully elucidated. The steady-state kinetic parameters for the SpnQ-catalyzed reaction have been determined, and the substrate specificities of SpnQ and SpnR have been explored. The implications of this work for natural product glycodiversification and comparative mechanistic analysis of SpnQ and related NDP-sugar 3-dehydrases E1 and ColD are discussed.
Collapse
Affiliation(s)
- Lin Hong
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
38
|
Neural network-based QSAR and insecticide discovery: spinetoram. J Comput Aided Mol Des 2008; 22:393-401. [PMID: 18344004 DOI: 10.1007/s10822-008-9205-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Improvements in the efficacy and spectrum of the spinosyns, novel fermentation derived insecticide, has long been a goal within Dow AgroSciences. As large and complex fermentation products identifying specific modifications to the spinosyns likely to result in improved activity was a difficult process, since most modifications decreased the activity. A variety of approaches were investigated to identify new synthetic directions for the spinosyn chemistry including several explorations of the quantitative structure activity relationships (QSAR) of spinosyns, which initially were unsuccessful. However, application of artificial neural networks (ANN) to the spinosyn QSAR problem identified new directions for improved activity in the chemistry, which subsequent synthesis and testing confirmed. The ANN-based analogs coupled with other information on substitution effects resulting from spinosyn structure activity relationships lead to the discovery of spinetoram (XDE-175). Launched in late 2007, spinetoram provides both improved efficacy and an expanded spectrum while maintaining the exceptional environmental and toxicological profile already established for the spinosyn chemistry.
Collapse
|
39
|
The evolution of gene collectives: How natural selection drives chemical innovation. Proc Natl Acad Sci U S A 2008; 105:4601-8. [PMID: 18216259 DOI: 10.1073/pnas.0709132105] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing has become central to the study of evolution. Comparing the sequences of individual genes from a variety of organisms has revolutionized our understanding of how single genes evolve, but the challenge of analyzing polygenic phenotypes has complicated efforts to study how genes evolve when they are part of a group that functions collectively. We suggest that biosynthetic gene clusters from microbes are ideal candidates for the evolutionary study of gene collectives; these selfish genetic elements evolve rapidly, they usually comprise a complete pathway, and they have a phenotype-a small molecule-that is easy to identify and assay. Because these elements are transferred horizontally as well as vertically, they also provide an opportunity to study the effects of horizontal transmission on gene evolution. We discuss known examples to begin addressing two fundamental questions about the evolution of biosynthetic gene clusters: How do they propagate by horizontal transfer? How do they change to create new molecules?
Collapse
|
40
|
Hong L, Zhao Z, Liu HW. Characterization of SpnQ from the spinosyn biosynthetic pathway of Saccharopolyspora spinosa: mechanistic and evolutionary implications for C-3 deoxygenation in deoxysugar biosynthesis. J Am Chem Soc 2007; 128:14262-3. [PMID: 17076492 PMCID: PMC2515268 DOI: 10.1021/ja0649670] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-3 deoxygenation step in the biosynthesis of d-forosamine (4-N,N-dimethylamino-2,3,4,6-tetradeoxy-d-threo-hexopyranose), a constituent of spinosyn produced by Saccharopolyspora spinosa, was investigated. The spnQ gene, proposed to encode a TDP-4-keto-2,6-dideoxy-d-glucose 3-dehydratase was cloned and overexpressed in E. coli. Characterization of the purified enzyme established that it is a PMP and iron-sulfur containing enzyme which catalyzes the C-3 deoxygenation in a reductase-dependent manner similar to that of the previously well characterized hexose 3-dehydrase E1 from Yersinia pseudotuberculosis. However, unlike E1, which has evolved to work with a specific reductase partner present in its gene cluster, SpnQ lacks a specific reductase, and works efficiently with general cellular reductases ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase. SpnQ also catalyzes C-4 transamination in the absence of an electron transfer intermediary and in the presence of PLP and l-glutamate. Under the same conditions, both E1 and the related hexose 3-dehydrase, ColD, catalyze C-3 deoxygenation. Thus, SpnQ possesses important features which distinguish it from other well studied homologues, suggesting unique evolutionary pathways for each of the three hexose 3-dehydrases studied thus far.
Collapse
Affiliation(s)
- Lin Hong
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
41
|
Baltz RH. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol 2007; 24:1533-40. [PMID: 17160059 DOI: 10.1038/nbt1265] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular engineering approaches to producing new antibiotics have been in development for about 25 years. Advances in cloning and analysis of antibiotic gene clusters, engineering biosynthetic pathways in Escherichia coli, transfer of engineered pathways from E. coli into Streptomyces expression hosts, and stable maintenance and expression of cloned genes have streamlined the process in recent years. Advances in understanding mechanisms and substrate specificities during assembly by polyketide synthases, nonribosomal peptide synthetases, glycosyltransferases and other enzymes have made molecular engineering design and outcomes more predictable. Complex molecular scaffolds not amenable to synthesis by medicinal chemistry (for example, vancomycin (Vancocin), daptomycin (Cubicin) and erythromycin) are now tractable by molecular engineering. Medicinal chemistry can further embellish the properties of engineered antibiotics, making the two disciplines complementary.
Collapse
Affiliation(s)
- Richard H Baltz
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, USA.
| |
Collapse
|
42
|
Baltz RH. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 2006; 33:507-13. [PMID: 16418869 DOI: 10.1007/s10295-005-0077-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
There are few new antibiotics in the pipeline today. The reasons may include starvation at the front of the pipeline due to inadequate sources of suitable compounds to screen coupled with poorly validated discovery methodologies. A successful antibiotic discovery approach in the past, based upon whole cell antibiotic screening of natural products from actinomycetes and fungi, eventually suffered from constipation in the middle of the pipeline due to rediscovery of known compounds, even though low throughput methodology was employed at the front end. The current lack of productivity may be attributed to the poor choice of strategies to address the discovery of new antibiotics. Recent applications of high throughput in vitro screening of individual antibacterial targets to identify lead compounds from combinatorial chemical libraries, traditional chemical libraries, and partially purified natural product extracts has not produced any significant clinical candidates. The solution to the current dilemma may be to return to natural product whole cell screening. For this approach to work in the current millennium, the process needs to be miniaturized to increase the throughput by orders of magnitude over traditional screening, and the rediscovery of known antibiotics needs to be minimized by methods that can be readily monitored and improved over time.
Collapse
Affiliation(s)
- Richard H Baltz
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, MA 02421, USA.
| |
Collapse
|