1
|
Nikolic M, Lazarevic N, Novakovic J, Jeremic N, Jakovljevic V, Zivkovic V, Bradic J, Pecarski D, Tel-Çayan G, Glamocija J, Sokovic M, Gregori A, Petrovic J. Characterization, In Vitro Biological Activity and In Vivo Cardioprotective Properties of Trametes versicolor (L.:Fr.) Quél. Heteropolysaccharides in a Rat Model of Metabolic Syndrome. Pharmaceuticals (Basel) 2023; 16:787. [PMID: 37375735 DOI: 10.3390/ph16060787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to examine the biological activity and cardioprotective potential of Trametes versicolor heteropolysaccharides (TVH) in a rat model of metabolic syndrome (MetS). This study included 40 Wistar rats divided into 5 groups: CTRL-healthy non-treated rats; MetS-non-treated rats; and H-TV, M-TV and L-TV-rats with MetS treated with either 300, 200 or 100 mg/kg TVH per os for 4 weeks. After finishing the treatment, we conducted an oral glucose tolerance test (OGTT), hemodynamic measurements and the animals were sacrificed, hearts isolated and subjected to the Langendorff technique. Blood samples were used for the determination of oxidative stress parameters, lipid status and insulin levels. We showed that α-amylase inhibition was not the mode of TVH antidiabetic action, while TVH showed a moderate inhibition of pathogenic microorganisms' growth (MIC 8.00 mg·mL-1; MBC/MFC 16.00 mg·mL-1). H-TV and M-TV significantly reduced the level of prooxidants (O2-, H2O2, TBARS; p < 0.05), increased antioxidants activity (SOD, CAT, GSH; p < 0.05), reduced blood pressure (p < 0.05), improved glucose homeostasis in the OGTT test (p < 0.05), and ejection fraction (p < 0.05) and cardiac contractility (p < 0.05) compared to MetS (p < 0.05). Moreover, TVH treatment normalized the lipid status and decreased insulin levels compared to MetS rats (p < 0.05). The obtained results demonstrated that the TVH may be considered a useful agent for cardioprotection in MetS conditions.
Collapse
Affiliation(s)
- Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Nevena Lazarevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Jovana Novakovic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena Jeremic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacology of the Institute of Biodesign and Complex System Modelling, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Jovana Bradic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Danijela Pecarski
- The College of Health Science, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| | - Gülsen Tel-Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, Muğla 48000, Turkey
| | - Jasmina Glamocija
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Andrej Gregori
- MycoMedica Ltd., Podkoren 72, 4280 Kranjska Gora, Slovenia
| | - Jovana Petrovic
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Mougin J, Lobanov V, Danion M, Roquigny R, Goardon L, Grard T, Morin T, Labbé L, Joyce A. Effects of dietary co-exposure to fungal and herbal functional feed additives on immune parameters and microbial intestinal diversity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108773. [PMID: 37105422 DOI: 10.1016/j.fsi.2023.108773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Misuse and overuse of antibiotics in aquaculture has proven to be an unsustainable practice leading to increased bacterial resistance. An alternative strategy involves the inclusion of immunostimulants in fish diets, especially fungal and herbal compounds already authorized for human consumption, hence without environmental or public health concerns. In this study, we used a holistic and cross-disciplinary pipeline to assess the immunostimulatory properties of two fungi: Trametes versicolor and Ganoderma lucidum; one herbal supplement, capsaicin in the form of Espelette pepper (Capsicum annuum), and a combination of these fungal and herbal additives on rainbow trout (Oncorhynchus mykiss). We investigated the impact of diet supplementation for 7 weeks on survival, growth performance, cellular, humoral, and molecular immune parameters, as well as the intestinal microbial composition of the fish. Uptake of herbal and fungal compounds influenced the expression of immune related genes, without generating an inflammatory response. Significant differences were detected in the spleen-tlr2 gene expression. Supplementation with herbal additives correlated with structural changes in the fish intestinal microbiota and enhanced overall intestinal microbial diversity. Results demonstrated that the different treatments had no adverse effect on growth performance and survival, suggesting the safety of the different feed additives at the tested concentrations. While the mechanisms and multifactorial interactions remain unclear, this study provides insights not only in regard to nutrition and safety of these compounds, but also how a combined immune and gut microbiota approach can shed light on efficacy of immunostimulant compounds for potential commercial inclusion as feed supplements.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Roxane Roquigny
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Lionel Goardon
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Laurent Labbé
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Angelova G, Brazkova M, Mihaylova D, Slavov A, Petkova N, Blazheva D, Deseva I, Gotova I, Dimitrov Z, Krastanov A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. J Fungi (Basel) 2022; 8:738. [PMID: 35887493 PMCID: PMC9319109 DOI: 10.3390/jof8070738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to characterize the bioactivity of mycelial biomass and crude exopolysaccharides (EPS) produced by Trametes versicolor NBIMCC 8939 and to reveal its nutraceutical potential. The EPS (1.58 g/L) were isolated from a culture broth. The macrofungal biomass was rich in protein, insoluble dietary fibers and glucans. The amino acid composition of the biomass was analyzed and 18 amino acids were detected. Three mycelial biomass extracts were prepared and the highest total polyphenol content (16.11 ± 0.14 mg GAE/g DW) and the total flavonoid content (5.15 ± 0.03 mg QE/g DW) were found in the water extract. The results indicated that the obtained EPS were heteropolysaccharides with glucose as the main building monosaccharide and minor amounts of mannose, xylose, galactose, fucose and glucuronic acid. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the complex structure of the crude EPS. Five probiotic lactic acid bacteria strains were used for the determination of the prebiotic effect of the crude EPS. The anti-inflammatory potential was tested in vitro using cell line HT-29. The significant decrease of IL-1 and IL-8 and increase of TGF-beta expression revealed anti-inflammatory potential of the crude exopolysaccharides from T. versicolor.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Irina Gotova
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Zhechko Dimitrov
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| |
Collapse
|
4
|
Yang F, Liu Z, Si W, Song Z, Yin L, Tang H. Facile Preparation of Polysaccharide-Polypeptide Conjugates via a Biphasic Solution Ring-Opening Polymerization. ACS Macro Lett 2022; 11:663-668. [PMID: 35570810 DOI: 10.1021/acsmacrolett.2c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polysaccharide-polypeptide conjugates have gained a broad interest in mimicking the structure and bioactivity of peptidoglycans or proteoglycans for biomedical applications. Efficient and precise preparation of the conjugates is challenging and unresolved, mainly because of the mismatched solubility between polysaccharide initiators and N-carboxyanhydrides (NCAs), which frequently results in competing side reactions and oligomeric polypeptide chain. Herein, we report a facile and efficient strategy to prepare the conjugates with well-controlled polypeptide chain length (lp) directly from unmodified polysaccharides via a biphasic solution ring-opening polymerization. The effect of lp on surface antibacterial properties has been investigated. Elongating the lp can significantly potentiate the antibiofilm property of the conjugate coatings. Our results may provide opportunities to develop various polypeptide-based conjugates with well-defined structures toward versatile uses.
Collapse
Affiliation(s)
- Fangping Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhiwei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wenting Si
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Haoyu Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Wang J, Nie J, Wang D, Liu H, Liu M, Yang Y, Zhong S. The structural characterization and anticancer activity of a polysaccharide from Coriolus versicolor. NEW J CHEM 2022. [DOI: 10.1039/d2nj00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coriolus versicolor is a traditional Chinese medicine and is widely applied as a functional food. In this study, a homogeneous polysaccharide, YZP-1a, was isolated from C. versicolor and its structure and anticancer activity were investigated.
Collapse
Affiliation(s)
- Jiahui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Meng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
6
|
Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China. Sci Rep 2021; 11:6303. [PMID: 33737649 PMCID: PMC7973567 DOI: 10.1038/s41598-021-85829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Fertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3− content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3− content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season.
Collapse
|
7
|
Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines 2020; 8:biomedicines8050135. [PMID: 32466253 PMCID: PMC7277906 DOI: 10.3390/biomedicines8050135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Coriolus versicolor (L.) Quél. is a higher fungi or mushroom which is now known by its accepted scientific name as Trametes versicolor (L.) Lloyd (family Polyporaceae). The polysaccharides, primarily two commercial products from China and Japan as PSP and PSK, respectively, have been claimed to serve as adjuvant therapy for cancer. In this paper, research advances in this field, including direct cytotoxicity in cancer cells and immunostimulatory effects, are scrutinised at three levels: in vitro, in vivo and clinical outcomes. The level of activity in the various cancers, key targets (both in cancer and immune cells) and pharmacological efficacies are discussed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
8
|
Scuto M, Di Mauro P, Ontario ML, Amato C, Modafferi S, Ciavardelli D, Trovato Salinaro A, Maiolino L, Calabrese V. Nutritional Mushroom Treatment in Meniere's Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int J Mol Sci 2019; 21:E284. [PMID: 31906226 PMCID: PMC6981469 DOI: 10.3390/ijms21010284] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
Meniere's disease (MD) represents a clinical syndrome characterized by episodes of spontaneous vertigo, associated with fluctuating, low to medium frequencies sensorineural hearing loss (SNHL), tinnitus, and aural fullness affecting one or both ears. To date, the cause of MD remains substantially unknown, despite increasing evidence suggesting that oxidative stress and neuroinflammation may be central to the development of endolymphatic hydrops and consequent otholitic degeneration and displacement in the reuniting duct, thus originating the otolithic crisis from vestibular otolithic organs utricle or saccule. As a starting point to withstand pathological consequences, cellular pathways conferring protection against oxidative stress, such as vitagenes, are also induced, but at a level not sufficient to prevent full neuroprotection, which can be reinforced by exogenous nutritional approaches. One emerging strategy is supplementation with mushrooms. Mushroom preparations, used in traditional medicine for thousands of years, are endowed with various biological actions, including antioxidant, immunostimulatory, hepatoprotective, anticancer, as well as antiviral effects. For example, therapeutic polysaccharopeptides obtained from Coriolus versicolor are commercially well established. In this study, we examined the hypothesis that neurotoxic insult represents a critical primary mediator operating in MD pathogenesis, reflected by quantitative increases of markers of oxidative stress and cellular stress response in the peripheral blood of MD patients. We evaluated systemic oxidative stress and cellular stress response in MD patients in the absence and in the presence of treatment with a biomass preparation from Coriolus. Systemic oxidative stress was estimated by measuring, in plasma, protein carbonyls, hydroxynonenals (HNE), and ultraweak luminescence, as well as by lipidomics analysis of active biolipids, such as lipoxin A4 and F2-isoprostanes, whereas in lymphocytes we determined heat shock proteins 70 (Hsp72), heme oxygenase-1 (HO-1), thioredoxin (Trx), and γ-GC liase to evaluate the systemic cellular stress response. Increased levels of carbonyls, HNE, luminescence, and F2-isoprostanes were found in MD patients with respect to the MD plus Coriolus-treated group. This was paralleled by a significant (p < 0.01) induction, after Coriolus treatment, of vitagenes such as HO-1, Hsp70, Trx, sirtuin-1, and γ-GC liase in lymphocyte and by a significant (p < 0.05) increase in the plasma ratio-reduced glutathione (GSH) vs. oxidized glutathione (GSSG). In conclusion, patients affected by MD are under conditions of systemic oxidative stress, and the induction of vitagenes after mushroom supplementation indicates a maintained response to counteract intracellular pro-oxidant status. The present study also highlights the importance of investigating MD as a convenient model of cochlear neurodegenerative disease. Thus, searching innovative and more potent inducers of the vitagene system can allow the development of pharmacological strategies capable of enhancing the intrinsic reserve of vulnerable neurons, such as ganglion cells to maximize antidegenerative stress responses and thus providing neuroprotection.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Paola Di Mauro
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Chiara Amato
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Domenico Ciavardelli
- School of Human and Scocial Science, “Kore” University of Enna, Via Salvatore Mazza 1, 94100 Enna, Italy;
- Centro Scienze dell’Invecchiamento e Medicina Traslazionale-CeSI-Met, via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Vittorio Calabrese
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| |
Collapse
|
9
|
Chakraborty I, Sen IK, Mondal S, Rout D, Bhanja SK, Maity GN, Maity P. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101425] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Wang KL, Lu ZM, Mao X, Chen L, Gong JS, Ren Y, Geng Y, Li H, Xu HY, Xu GH, Shi JS, Xu ZH. Structural characterization and anti-alcoholic liver injury activity of a polysaccharide from Coriolus versicolor mycelia. Int J Biol Macromol 2019; 137:1102-1111. [DOI: 10.1016/j.ijbiomac.2019.06.242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/19/2019] [Accepted: 06/29/2019] [Indexed: 12/31/2022]
|
11
|
Costa-Silva TA, Camacho-Córdova DI, Agamez-Montalvo GS, Parizotto LA, Sánchez-Moguel I, Pessoa-Jr A. Optimization of culture conditions and bench-scale production of anticancer enzyme L-asparaginase by submerged fermentation from Aspergillus terreus CCT 7693. Prep Biochem Biotechnol 2018; 49:95-104. [PMID: 30488788 DOI: 10.1080/10826068.2018.1536990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
L-Asparaginase amidohydrolase (EC 3.5.1.1) has received significant attention owing to its clinical use in acute lymphoblastic leukemia treatment and non-clinical applications in the food industry to reduce acrylamide (toxic compound) formation during the frying of starchy foods. In this study, a sequential optimization strategy was used to determine the best culture conditions for L-asparaginase production from filamentous fungus Aspergillus terreus CCT 7693 by submerged fermentation. The cultural conditions were studied using a 3-level, central composite design of response surface methodology, and biomass and enzyme production were optimized separately. The highest amount of biomass (22.0 g·L-1) was obtained with modified Czapek-Dox medium containing glucose (14 g·L-1), L-proline (10 g·L-1), and ammonium nitrate (2 g·L-1) fermented at 37.2 °C and pH 8.56; for maximum enzyme production (13.50 U·g-1), the best condition was modified Czapek-Dox medium containing glucose (2 g·L-1), L-proline (10 g·L-1), and inoculum concentration of 4.8 × 108 espore·mL-1 adjusted to pH 9.49 at 34.6 °C. The L-asparaginase production profile was studied in a 7 L bench-scale bioreactor and a final specific activity of 13.81 U·g-1 was achieved, which represents an increase of 200% in relation to the initial non-optimized conditions.
Collapse
Affiliation(s)
- T A Costa-Silva
- a Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | - D I Camacho-Córdova
- a Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | | | - L A Parizotto
- c Polytechnic School , University of São Paulo , São Paulo, Brazil
| | - I Sánchez-Moguel
- a Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | - A Pessoa-Jr
- a Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
12
|
Trovato Salinaro A, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, Ontario ML, Tomasello M, Uva M, Maiolino L, Calabrese EJ, Cuzzocrea S, Calabrese V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. IMMUNITY & AGEING 2018; 15:8. [PMID: 29456585 PMCID: PMC5813410 DOI: 10.1186/s12979-017-0108-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Human life develops and expands not only in time and space, but also in the retrograde permanent recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered or lost under pathological conditions such as Alzheimer’s disease, including recently associated oxidant pathologies, such as ocular neural degeneration occurring in glaucoma or neurosensorial degeneration occurring in Menière’s disease. Oxidative stress and altered antioxidant systems have been suggested to play a role in the aetiology of major neurodegenerative disorders, and altered expression of genes sensing oxidative stress, as well as decreased cellular stress response mechanisms could synergistically contribute to the course of these oxidant disorders. Thus, the theory that low levels of stress can produce protective responses against the pathogenic processes is a frontier area of neurobiological research focal to understanding and developing therapeutic approaches to neurodegenerative disorders. Herein, we discuss cellular mechanisms underlying AD neuroinflammatory pathogenesis that are contributory to Alzheimer’s disease. We describe endogenous cellular defence mechanism modulation and neurohormesis as a potentially innovative approach to therapeutics for AD and other neurodegenerative conditions that are associated with mitochondrial dysfunction and neuroinflammation. Particularly, we consider the emerging role of the inflammasome as an important component of the neuroprotective network, as well as the importance of Coriolus and Hericium nutritional mushrooms in redox stress responsive mechanisms and neuroprotection.
Collapse
Affiliation(s)
- Angela Trovato Salinaro
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro", Catania, Italy
| | - Rosanna Di Paola
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Maria Scuto
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rosalia Crupi
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Maria Teresa Cambria
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Maria Laura Ontario
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Mario Tomasello
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Maurizio Uva
- 3Department of Medical and Surgery Sciences and Advanced Technology, University of Catania, Catania, Italy
| | - Luigi Maiolino
- 3Department of Medical and Surgery Sciences and Advanced Technology, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Salvatore Cuzzocrea
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Vittorio Calabrese
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
13
|
Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. Fungal Biol 2018; 122:302-309. [PMID: 29665956 DOI: 10.1016/j.funbio.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022]
Abstract
Laccase production in saline conditions is still poorly studied. The aim of the present study was to investigate the production of laccase in two different types of bioreactors by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. The highest laccase activity and productivity were obtained in the Stirred Tank (ST) bioreactor, while the highest biomass concentration in Air-lift (AL) bioreactor. The main laccase produced was purified by ion exchange and size exclusion chromatography and appeared to be monomeric with molecular weight of approximately 55 kDa. The optimum oxidation activity was obtained at pH 5.0. The thermal stability of the enzyme ranged from 30 to 50 °C (120 min). The Far-UV Circular Dichroism revealed the presence of high β-sheet and low α-helical conformation in the protein structure. Additional experiments carried out in flask scale showed that the marine-derived fungus was able to produce laccase only in the presence of artificial seawater and copper sulfate. Results from the present study confirmed the fungal adaptation to marine conditions and its potential for being used in saline environments and/or processes.
Collapse
|
14
|
Improved production and antitumor activity of intracellular protein-polysaccharide from Trametes versicolor by the quorum sensing molecule-tyrosol. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Wang KF, Sui KY, Guo C, Liu CZ. Quorum sensing molecule-farnesol increased the production and biological activities of extracellular polysaccharide from Trametes versicolor. Int J Biol Macromol 2017; 104:377-383. [PMID: 28610927 DOI: 10.1016/j.ijbiomac.2017.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022]
Abstract
A novel strategy of exposing 2-day-old mycelia cultures to 0.8mM farnesol was developed to stimulate extracellular polysaccharide (EPS) production in Trametes versicolor submerged cultures. Farnesol, a quorum sensing molecule in fungi, could significantly increase EPS production by promoting polysaccharide biosynthesis and regulating mycelial morphology. EPS yield reached a maximum of 2.56g/L that was 2.7-fold greater than that of control cultures. Farnesol made T. versicolor develop into fluffy, loose and multi-hyphae morphology, which facilitated the excretion of intracellular polysaccharide into culture medium. Moreover, EPS from farnesol-induced cultures (EPS-F) with higher carbohydrate and uronic acid contents mainly contained high molecular weight polysaccharide (134kDa, 85%), and comprised glucose, mannose and galactose in a molar ratio of 34.2:2.1:1.0. These physicochemical properties led to stronger antioxidant and antitumor activities of EPS-F. This is the first report that farnesol can significantly improve the production of polysaccharide with higher biological activities. It provides a novel strategy to enhance the production and bioactivity of mushroom polysaccharide using microbial quorum sensing molecules.
Collapse
Affiliation(s)
- Ke-Feng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun-Yan Sui
- School of Material Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chen Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun-Zhao Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Material Science and Engineering, Qingdao University, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
16
|
Bellettini MB, Fiorda FA, Maieves HA, Teixeira GL, Ávila S, Hornung PS, Júnior AM, Ribani RH. Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 2016; 26:633-646. [PMID: 31048986 PMCID: PMC6486501 DOI: 10.1016/j.sjbs.2016.12.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/08/2016] [Accepted: 12/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pleurotus genus is one of most extensively studied white-rot fungi due to its exceptional ligninolytic properties. It is an edible mushroom and it also has several biological effects, as it contains important bioactive molecules. In basidiomycete fungi, lignocellulolytic enzymes are affected by many typical fermentation factors, such as medium composition, ratio of carbon to nitrogen, pH, temperature, air composition, etc. The survival and multiplication of mushrooms is related to a number of factors, which may act separately or have interactive effects among them. Out that understanding challenges in handling Pleurotus species mushroom requires a fundamental understanding of their physical, chemical, biological and enzymatic properties. This review presents a practical checklist of available intrinsic and extrinsic factors, providing useful synthetic information that may help different users. An in-depth understanding of the technical features is needed for an appropriate and efficient production of Pleurotus spp.
Collapse
Affiliation(s)
- Marcelo Barba Bellettini
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
- Corresponding author.
| | - Fernanda Assumpção Fiorda
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
| | - Helayne Aparecida Maieves
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
| | - Gerson Lopes Teixeira
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
| | - Suelen Ávila
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
| | - Polyanna Silveira Hornung
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
| | - Agenor Maccari Júnior
- Federal University of Paraná, Department of Agronomy, PO Box 19011, Zip Code: 80035-060 Curitiba, Paraná State, Brazil
| | - Rosemary Hoffmann Ribani
- Federal University of Paraná, Department of Chemical Engineering, Graduate Program in Food Engineering, PO Box 19011, Zip Code: 81531-980 Curitiba, Paraná State, Brazil
| |
Collapse
|
17
|
Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, Koverech G, Luca M, Serra A, Toscano MA, Petralia A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer's disease pathogenesis. Neurotoxicology 2015; 53:350-358. [PMID: 26433056 DOI: 10.1016/j.neuro.2015.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is an early pathological feature in neurodegenerative diseases. As a prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a potential neurohormetic target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and lipoxin A4. Emerging interest is now focusing on molecules capable of activating the vitagene system as novel therapeutic targets to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. Mushroom-derived lipoxin A4 (LXA4) is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as rich source of polysaccharopeptides endowed with significant antitumor, antioxidant, antiviral, antibacterial and cytoprotective effects, thereby capable of stimulating host immune responses. Here we provide evidence of a neuroprotective action of the Coriolus mushroom when administered orally to rat. Expression of LXA4 was measured in different brain regions after oral administration of a Coriolus biomass preparation, given for 30 days. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, heme oxygenase-1 and thioredoxin. In the brain of rats receiving Coriolus, maximum induction of LXA4 was observed in cortex and hippocampus. Hsps induction was associated with no significant changes in IkBα, NFkB and COX-2 brain levels. Conceivably, activation of LXA4 signaling and modulation of stress-responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Collapse
Affiliation(s)
- A Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - R Siracusa
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - R Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - M Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - V Fronte
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - G Koverech
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Luca
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Serra
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - M A Toscano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Petralia
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - S Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - V Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
18
|
A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 2015; 1400:98-106. [DOI: 10.1016/j.chroma.2015.04.054] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/23/2022]
|
19
|
Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities. Carbohydr Polym 2014; 111:324-32. [DOI: 10.1016/j.carbpol.2014.03.083] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 01/16/2023]
|
20
|
R. S, M.K. P, S. J, L.K. J, K. S, K. K, S.N. K, V. K. Immunopotentiating properties of extracellular polysaccharide from Trametes hirsuta strain VKESR. Carbohydr Polym 2014; 106:299-304. [DOI: 10.1016/j.carbpol.2014.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 11/27/2022]
|
21
|
Ren X, He L, Cheng J, Chang J. Optimization of the solid-state fermentation and properties of a polysaccharide from Paecilomyces cicadae (Miquel) Samson and its antioxidant activities in vitro. PLoS One 2014; 9:e87578. [PMID: 24498337 PMCID: PMC3911990 DOI: 10.1371/journal.pone.0087578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/23/2013] [Indexed: 11/20/2022] Open
Abstract
The culture conditions for the yield of a polysaccharide (PCPS) produced by Paecilomyces cicadae (Miquel) Samson on solid-state fermentation were investigated using response surface methodology (RSM). Plackett-Burman design (PBD) was applied to screen out significant factors, followed by the paths of steepest ascent to move to the nearest region of maximum response. Then Box-Behnken design (BBD) was conducted to optimize the final levels of the culture conditions. After analyzing the regression equation and the response surface contour plots, relative humidity 56.07%, inoculum 13.51 mL/100 g and temperature 27.09°C were found to be the optimal key parameters for PCPS production. The maximum predicted yield of PCPS was 10.76 mg/g under the optimized conditions. The resulting PCPS (FPCPS) generated at optimal conditions was purified by chromatography column and found to be composed of mannose (43.2%), rhamnose (32.1%), xylose (14.5%) and arabinose (10.2%). Based on the size exclusion chromatography combined with multi-angle laser light scattering (SEC-MALLS) analysis, FPCPS adopted a Gaussian coil conformation in 0.1 M NaNO3 solution with 3.75 × 10(6) g/mol of the weight-average molar mass (Mw) and 41.1 nm of the root-mean square radius (Rg(2))z (1/2). Furthermore, both of the polysaccharides were revealed to have strong antioxidant activities by evaluating in DPPH radical, superoxide radicals and hydroxyl radical assay. These data suggest the polysaccharides of Paecilomyces cicadae (Miquel) Samson produced by solid-state fermentation could be explored as potential natural antioxidants.
Collapse
Affiliation(s)
- Xueyong Ren
- College of Materials Science and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Institute of Biological Technology, Zhejiang Forestry Academy, Hangzhou, P.R. China
| | - Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Institute of Biological Technology, Zhejiang Forestry Academy, Hangzhou, P.R. China
| | - Jianmin Chang
- College of Materials Science and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
22
|
Khan MS, Zhang X, You L, Fu X, Abbasi AM. Structure and Bioactivities of Fungal Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_28-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Production, fractionation, characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydr Polym 2013; 96:460-5. [DOI: 10.1016/j.carbpol.2013.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/23/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
|
24
|
A polysaccharide from the fungi of Huaier exhibits anti-tumor potential and immunomodulatory effects. Carbohydr Polym 2012; 92:577-82. [PMID: 23218338 DOI: 10.1016/j.carbpol.2012.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 08/09/2012] [Accepted: 09/05/2012] [Indexed: 11/23/2022]
Abstract
A neutral water-soluble polysaccharide (W-NTRP), with a molecular weight of 2.5 × 10(4)Da, was isolated from the fruit bodies of Trametes robiniophila (Huaier). Gas chromatography (GC) results indicated that W-NTRP was determined to be galactose (Gal), arabinose (Ara) and glucose (Glc), with a relative molar ratio of 4.2:2.5:0.7. Its antitumor and immunomodulatory activity were evaluated in vitro. W-NTRP showed remarkable inhibitory effect on three human cholangiocarcinoma cell lines (QBC939, Sk-ChA-1 and MZ-ChA-1), with respective IC(50) values of 47.8, 75.9, and 43.7 μg/mL, but had no cytotoxicity to L-929 normal cells. Furthermore, W-NTRP had proliferation promoting effect on mouse splenocytes with or without concanavalin A (ConA) or lipopolysaccharide (LPS) in a bell-shaped dose-response manner. In addition, W-NTRP could prominently stimulate macrophages to produce nitric oxide (NO) through the up-regulation of inducible NO synthase (iNOS) activity. These results suggest that W-NTRP could be explored as a potential antitumor agent for cholangiocarcinoma.
Collapse
|
25
|
Silva S, Martins S, Karmali A, Rosa E. Production, purification and characterisation of polysaccharides from Pleurotus ostreatus with antitumour activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:1826-1832. [PMID: 22234986 DOI: 10.1002/jsfa.5560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/20/2011] [Accepted: 11/24/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Mushroom polysaccharides play an important role in functional foods because they exhibit biological modulator properties such as antitumour, antiviral and antibacterial activities. The present study involved the production, purification and characterisation of intracellular and extracellular free and protein-bound polysaccharides from Pleurotus ostreatus and the investigation of their growth-inhibitory effect on human carcinoma cell lines. RESULTS Several fermentation parameters were obtained: batch polysaccharide productivities of 0.013 ± 8.12 × 10⁻⁵ and 0.037 ± 0.0005 g L⁻¹ day⁻¹ for intracellular and extracellular polysaccharides respectively, a maximum biomass concentration of 9.35 ± 0.18 g L⁻¹ , P(max) = 0.935 ± 0.018 g L⁻¹ day⁻¹, µ(max) = 0.218 ± 0.02 day⁻¹, Y(EP/X) = 0.040 ± 0.0015 g g⁻¹ and Y(IP/X) = 0.014 ± 0.0003 g g⁻¹ . Some polysaccharides exhibited superoxide dismutase (SOD)-like activity of 50-200 units. Fourier transform infrared analysis of the polysaccharides revealed absorption bands characteristic of such biological macromolecules. Cytotoxicity assays showed that both intracellular and extracellular polysaccharides exhibited antitumour activity towards several tested human carcinoma cell lines in a dose-dependent manner. CONCLUSION The polysaccharides of P. ostreatus exhibited high SOD-like activity, which strongly supports their biological effect on tumour cell lines. The extracellular polysaccharides presented the highest antitumour activity towards the RL95 carcinoma cell line and should be further investigated as an antitumour agent.
Collapse
Affiliation(s)
- Sara Silva
- Chemical Engineering and Biotechnology Research Center and Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, P-1959-007 Lisboa, Portugal
| | | | | | | |
Collapse
|
26
|
|
27
|
In vivo immunostimulatory and tumor-inhibitory activities of polysaccharides isolated from solid-state-cultured Trametes robiniophila Murrill. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0109-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Rau U, Kuenz A, Wray V, Nimtz M, Wrenger J, Cicek H. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801. Appl Microbiol Biotechnol 2009; 81:827-37. [DOI: 10.1007/s00253-008-1700-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/29/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
29
|
Lin FY, Lai YK, Yu HC, Chen NY, Chang CY, Lo HC, Hsu TH. Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor. Food Chem 2008; 110:446-53. [DOI: 10.1016/j.foodchem.2008.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/30/2007] [Accepted: 02/08/2008] [Indexed: 11/25/2022]
|
30
|
Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME. The immunobiology of mushrooms. Exp Biol Med (Maywood) 2008; 233:259-76. [PMID: 18296732 DOI: 10.3181/0708-mr-227] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There has been enormous interest in the biologic activity of mushrooms and innumerable claims have been made that mushrooms have beneficial effects on immune function with subsequent implications for inhibition of tumor growth. The majority of these observations are anecdotal and often lack standardization. However, there remains considerable data on both in vitro and in vivo effects that reflect on the potential of mushroom compounds to influence human immunity. A number of these effects are beneficial but, unfortunately, many responses are still characterized based on phenomenology and there is more speculation than substance. With respect to tumor biology, although many neoplastic lesions are immunogenic, tumor antigens frequently are self antigens and induce tolerance and many patients with cancer exhibit suppressed immune responses, including defective antigen presentation. Therefore, if and when mushroom extracts are effective, they more likely function as a result of improved antigen presentation by dendritic cells than by a direct cytopathic effect. In this review we attempt to place these data in perspective, with a particular focus on dendritic cell populations and the ability of mushroom extracts to modulate immunity. There is, at present, no scientific basis for the use of either mushrooms or mushroom extracts in the treatment of human patients but there is significant potential for rigorous research to understand the potential of mushrooms in human disease and thence to focus on appropriate clinical trials to demonstrate effectiveness and/ or potential toxicity.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis School of Medicine, 451 E. Health Sciences Drive, Suite 6510, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|