1
|
Comba-González NB, Chaves-Moreno D, Santamaría-Vanegas J, Montoya-Castaño D. A pan-genomic assessment: Delving into the genome of the marine epiphyte Bacillus altitudinis strain 19_A and other very close Bacillus strains from multiple environments. Heliyon 2024; 10:e27820. [PMID: 38560215 PMCID: PMC10981035 DOI: 10.1016/j.heliyon.2024.e27820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.
Collapse
Affiliation(s)
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Dolly Montoya-Castaño
- Bioprocesses and Bioprospecting Group, Biotechnology Institute, Universidad Nacional de Colombia, Colombia
| |
Collapse
|
2
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Sánchez-Lozano I, Muñoz-Cruz LC, Hellio C, Band-Schmidt CJ, Cruz-Narváez Y, Becerra-Martínez E, Hernández-Guerrero CJ. Metabolomic Insights of Biosurfactant Activity from Bacillus niabensis against Planktonic Cells and Biofilm of Pseudomonas stutzeri Involved in Marine Biofouling. Int J Mol Sci 2023; 24:ijms24044249. [PMID: 36835662 PMCID: PMC9965525 DOI: 10.3390/ijms24044249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In marine environments, biofilm can cause negative impacts, including the biofouling process. In the search for new non-toxic formulations that inhibit biofilm, biosurfactants (BS) produced by the genus Bacillus have demonstrated considerable potential. To elucidate the changes that BS from B. niabensis promote in growth inhibition and biofilm formation, this research performed a nuclear magnetic resonance (NMR) metabolomic profile analysis to compare the metabolic differences between planktonic cells and biofilms of Pseudomonas stutzeri, a pioneer fouling bacteria. The multivariate analysis showed a clear separation between groups with a higher concentration of metabolites in the biofilm than in planktonic cells of P. stutzeri. When planktonic and biofilm stages were treated with BS, some differences were found among them. In planktonic cells, the addition of BS had a minor effect on growth inhibition, but at a metabolic level, NADP+, trehalose, acetone, glucose, and betaine were up-regulated in response to osmotic stress. When the biofilm was treated with the BS, a clear inhibition was observed and metabolites such as glucose, acetic acid, histidine, lactic acid, phenylalanine, uracil, and NADP+ were also up-regulated, while trehalose and histamine were down-regulated in response to the antibacterial effect of the BS.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Luz Clarita Muñoz-Cruz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Claire Hellio
- CNRS, IRD, Ifremer, LEMAR, Univ. Brest, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Instituto Politécnico Nacional-ESIQIE-UPALM, Unidad Profesional Adolfo López Mateos, Edificio 7, 1.er Piso, Sección A, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Zacatenco, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz 23096, Mexico
- Correspondence: (E.B.-M.); (C.J.H.-G.)
| |
Collapse
|
4
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
5
|
Araújo FVDE, Netto MCM, Azevedo GP, Jayme MMA, Nunes-Carvalho MC, Silva MM, Carmo FLDO. Ecology and biotechnological potential of bacterial community from three marine sponges of the coast of Rio de Janeiro, Brazil. AN ACAD BRAS CIENC 2017; 89:2785-2792. [PMID: 29236862 DOI: 10.1590/0001-3765201720170462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/11/2017] [Indexed: 11/22/2022] Open
Abstract
Marine sponges has been a large reservoir of microbial diversity, with the presence of many species specific populations as well as producing biologically active compounds, which has attracted great biotechnological interest. In order to verify the influence of the environment in the composition of the bacterial community present in marine sponges and biotechnological potential of bacteria isolated from these organisms, three species of sponges and the waters surrounding them were collected in different beaches of Rio de Janeiro, Brazil. The profile of the bacterial community present in sponges and water was obtained by PCR-DGGE technique and the biotechnological potential of the strains isolated by producing amylase, cellulase, protease and biosurfactants. The results showed that despite the influence of the environment in the composition of the microbial community, studied marine sponges shown to have specific bacterial populations, with some, showing potential in the production of substances of biotechnological applications.
Collapse
Affiliation(s)
- Fábio V DE Araújo
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Marcelle C M Netto
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Gustavo P Azevedo
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Marcelly M A Jayme
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, 3° andar , Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Monica C Nunes-Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 149, 21044-020 Rio de Janeiro, RJ, Brazil
| | - Mariana M Silva
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Flávia L DO Carmo
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Ecological roles and biotechnological applications of marine and intertidal microbial biofilms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:163-205. [PMID: 24817086 DOI: 10.1007/10_2014_271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor.
Collapse
|
8
|
Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington. World J Microbiol Biotechnol 2013; 30:1325-34. [DOI: 10.1007/s11274-013-1557-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/09/2013] [Indexed: 11/25/2022]
|
9
|
Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci 2013; 14:18959-72. [PMID: 24065097 PMCID: PMC3794815 DOI: 10.3390/ijms140918959] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
A previously reported bacterial bioemulsifier, here termed microbactan, was further analyzed to characterize its lipid component, molecular weight, ionic character and toxicity, along with its bioemulsifying potential for hydrophobic substrates at a range of temperatures, salinities and pH values. Analyses showed that microbactan is a high molecular weight (700 kDa), non-ionic molecule. Gas chromatography of the lipid fraction revealed the presence of palmitic, stearic, and oleic acids; thus microbactan may be considered a glycolipoprotein. Microbactan emulsified aromatic hydrocarbons and oils to various extents; the highest emulsification index was recorded against motor oil (96%). The stability of the microbactan-motor oil emulsion model reached its highest level (94%) at 50 °C, pH 10 and 3.5% NaCl content. It was not toxic to Artemia salina nauplii. Microbactan is, therefore, a non-toxic and non-ionic bioemulsifier of high molecular weight with affinity for a range of oily substrates. Comparative phylogenetic assessment of the 16S rDNA gene of Microbacterium sp. MC3B-10 with genes derived from other marine Microbacterium species suggested that this genus is well represented in coastal zones. The chemical nature and stability of the bioemulsifier suggest its potential application in bioremediation of marine environments and in cosmetics.
Collapse
|
10
|
Abed RMM, Dobretsov S, Al-Fori M, Gunasekera SP, Sudesh K, Paul VJ. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Ind Microbiol Biotechnol 2013; 40:759-72. [PMID: 23645384 DOI: 10.1007/s10295-013-1276-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| | | | | | | | | | | |
Collapse
|
11
|
Dobretsov S, Abed RMM, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms. BIOFOULING 2013; 29:423-41. [PMID: 23574279 DOI: 10.1080/08927014.2013.776042] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | |
Collapse
|
12
|
Quinn GA, Maloy AP, McClean S, Carney B, Slater JW. Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. BIOFOULING 2012; 28:1151-1166. [PMID: 23113815 DOI: 10.1080/08927014.2012.738292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although biofilms are recognised as important in microbial colonisation, solutions to their inhibition are predominantly based on planktonic assays. These solutions have limited efficacy against biofilms. Here, a series of biofilm-orientated tests were used to identify anti-biofilm compounds from marine micro-flora. This led to the isolation of a complex of anti-biofilm compounds from an extract of Paenibacillus polymyxa (PPE). A combination of rpHPLC and mass spectrometry identified the principle components of PPE as fusaricidin B (LI-FO4b) and polymyxin D1, with minor contributions from surfactins. This complex (PPE) reduced the biofilm biomass of Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus bovis. In contrast, ampicillin was only effective against S. aureus. PPE also inhibited a self-assembling marine biofilm (SAMB) in co-incubation assays by 99.3% ± 1.9 and disrupted established SAMB by 72.4% ± 4.4, while ampicillin showed no significant reduction. The effectiveness of this complex of lipopeptides against single and multispecies biofilms suggests a future role in biofilm prevention strategies.
Collapse
Affiliation(s)
- Gerry A Quinn
- Centre of Applied Marine Biotechnology, Letterkenny Institute of Technology, Letterkenny, County Donegal, Republic of Ireland.
| | | | | | | | | |
Collapse
|
13
|
Bengen DG, Khoeri MM, Marhaeni B, Radjasa OK, Sabdono A, Sudoyo H. Antifouling Activity of Bacterial Symbionts of Seagrasses against Marine Biofilm-Forming Bacteria. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jep.2011.29143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Antidiatom and antibacterial activity of epiphytic bacteria isolated from Ulva lactuca in tropical waters. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0606-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ortega-Morales BO, Chan-Bacab MJ, De la Rosa-García SDC, Camacho-Chab JC. Valuable processes and products from marine intertidal microbial communities. Curr Opin Biotechnol 2010; 21:346-52. [PMID: 20202811 DOI: 10.1016/j.copbio.2010.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/25/2022]
Abstract
Microbial communities are ubiquitous in marine intertidal environments. These communities, which grow preferentially as biofilms on natural and artificial surfaces, carry out key processes contributing to the functioning of coastal environments and providing valuable services to human society, including carbon cycling, primary productivity, trophic linkage, and transfer and removal of pollutants. In addition, their surface-associated life style greatly influences the integrity and performance of marine infrastructure and archaeological heritage materials. The fluctuating conditions of the intertidal zone make it an extreme environment to which intertidal biofilm organisms must adapt at varying levels. This requirement has probably favored the development and spread of specific microorganisms with particular physiological and metabolic processes. These organisms may have potential biotechnological utility, in that they may provide novel secondary metabolites, biopolymers, lipids, and enzymes and even processes for the production of energy in a sustainable manner.
Collapse
Affiliation(s)
- Benjamín Otto Ortega-Morales
- Centro de Investigaciones en Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, 24039 Campeche, Mexico.
| | | | | | | |
Collapse
|
16
|
Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biotechnol 2009; 36:1047-56. [PMID: 19471982 DOI: 10.1007/s10295-009-0588-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
In this study, we screened seven novel sponge-associated marine bacteria for their antibacterial and antilarval-settlement activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-bacterial-growth activity of crude extracts of each bacterium was evaluated by the disk-diffusion assay. Extracts of four potent bacteria with high and broad spectra of antibacterial activity were further separated with solvents of different polarities (hexane and ethyl acetate). To evaluate their indirect inhibitive effect on larval settlement, we tested for their antibiofilm formation activity against two of the test bacteria (Vibrio halioticoli and Loktanella hongkongensis) inductive to Hydroides elegans larval settlement. About 60 and 87% of the extracts inhibited biofilm formation by V. halioticoli and by L. hongkongensis respectively. The extracts were also tested for their direct antilarval-settlement activity against the barnacle Balanus amphitrite and the polychaete H. elegans; 87% of the extracts had a strong inhibitive effect on larval settlement of both species. Extracts of two of the isolates completely inhibited larval settlement of B. amphitrite at 70 microg ml(-1) and H. elegans at 60 microg ml(-1). The organic extracts of Winogradskyella poriferorum effectively inhibited the larval settlement of both H. elegans and B. amphitrite and the biofilm formation of the two bacterial species. The metabolites present in the active crude extracts were profiled using GC MS, and the most prevalent metabolites present in all extracts were identified. This study successfully identified potential new sources of antifouling compounds.
Collapse
|
17
|
Ortega-Morales BO, Ortega-Morales FN, Lara-Reyna J, De la Rosa-García SC, Martínez-Hernández A, Montero-M J. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:375-383. [PMID: 18931878 DOI: 10.1007/s10126-008-9152-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/25/2008] [Indexed: 05/26/2023]
Abstract
We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested against C. gloeosporioides, Colletotrichum fragariae, and Fusarium oxysporum on two culture media, potato dextrose agar (PDA) and a marine medium-based agar [yeast extract agar (YEA)] at different times of growth of the antagonists (early, co-inoculation with the pathogen and late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture media and time of colonization (P < 0.05). In general, higher suppressive activities were recorded for assays performed on YEA than on PDA; and also when the antagonists were allowed to grow 24 h earlier than the pathogen. F. oxysporum was the most resistant fungus while the most sensitive was C. gloeosporioides ATCC 42374. Significant differences in antagonistic activity (P < 0.05) were found between the different isolates. In general, Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial biocontrol strain Bacillus subtilis G03 (Kodiak). Further incubation studies and scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, and inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing its potential for fungal biocontrol. Additional studies are required to definitively identify the active isolates and to determine their mode of antifungal action, safety, and biocompatibility.
Collapse
Affiliation(s)
- B O Ortega-Morales
- Centro de Investigaciones en Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Campeche, México.
| | | | | | | | | | | |
Collapse
|
18
|
Briand JF. Marine antifouling laboratory bioassays: an overview of their diversity. BIOFOULING 2009; 25:297-311. [PMID: 19191083 DOI: 10.1080/08927010902745316] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In aquatic environments, biofouling is a natural process of colonization of submerged surfaces, either living or artificial, involving a wide range of organisms from bacteria to invertebrates. Antifouling can be defined as preventing the attachment of organisms onto surfaces. This article reviews the laboratory bioassays that have been developed for studying the control of algae and invertebrates by epibiosis (chemical ecology) and the screening of new active compounds (natural products and biocides) to inhibit settlement or adhesion, ie fouling-release coatings. The assays utilize a range of organisms (mainly marine bacteria, diatoms, algae, barnacles). The main attributes of assays for micro- and macroorganisms are described in terms of their main characteristics and depending on the biological process assessed (growth, adhesion, toxicity, behavior). The validation of bioassays is also discussed.
Collapse
Affiliation(s)
- Jean-Francois Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France.
| |
Collapse
|