1
|
Jian P, Liu J, Li L, Song Q, Zhang D, Zhang S, Chai C, Zhao H, Zhao G, Zhu H, Qiao J. AcrR1, a novel TetR/AcrR family repressor, mediates acid and antibiotic resistance and nisin biosynthesis in Lactococcus lactis F44. J Dairy Sci 2024; 107:6576-6591. [PMID: 38762103 DOI: 10.3168/jds.2024-24754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 05/20/2024]
Abstract
Lactococcus lactis, widely used in the manufacture of dairy products, encounters various environmental stresses both in natural habitats and during industrial processes. It has evolved intricate machinery of stress sensing and defense to survive harsh stress conditions. Here, we identified a novel TetR/AcrR family transcription regulator, designated AcrR1, to be a repressor for acid and antibiotic tolerance that was derepressed in the presence of vancomycin or under acid stress. The survival rates of acrR1 deletion strain ΔAcrR1 under acid and vancomycin stresses were about 28.7-fold (pH 3.0, HCl), 8.57-fold (pH 4.0, lactic acid) and 2.73-fold (300 ng/mL vancomycin) greater than that of original strain F44. We also demonstrated that ΔAcrR1 was better able to maintain intracellular pH homeostasis and had a lower affinity to vancomycin. No evident effects of AcrR1 deletion on the growth and morphology of strain F44 were observed. Subsequently, we characterized that the transcription level of genes associated with amino acids biosynthesis, carbohydrate transport and metabolism, multidrug resistance, and DNA repair proteins significantly upregulated in ΔAcrR1 using transcriptome analysis and quantitative reverse transcription-PCR assays. Additionally, AcrR1 could repress the transcription of the nisin post-translational modification gene, nisC, leading to a 16.3% increase in nisin yield after AcrR1 deletion. Our results not only refined the knowledge of the regulatory mechanism of TetR/AcrR family regulator in L. lactis, but presented a potential strategy to enhance industrial production of nisin.
Collapse
Affiliation(s)
- Pingqiu Jian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China.
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Qianqian Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Di Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Shenyi Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Chaofan Chai
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Hui Zhao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
2
|
Portieles R, Xu H, Chen F, Gao J, Du L, Gao X, Nordelo CB, Yue Q, Zhao L, Gonzalez NP, Bermudez RS, Borrás-Hidalgo O. Bioengineering of a Lactococcus lactis subsp. lactis strain enhances nisin production and bioactivity. PLoS One 2023; 18:e0281175. [PMID: 37036850 PMCID: PMC10085027 DOI: 10.1371/journal.pone.0281175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Lactococcus lactis subsp. lactis is a food bacterium that has been utilized for decades in food fermentation and the development of high-value industrial goods. Among these, nisin, which is produced by several strains of L. lactis subsp. lactis, plays a crucial role as a food bio-preservative. The gene expression for nisin synthesis was evaluated using qPCR analysis. Additionally, a series of re-transformations of the strain introducing multiple copies of the nisA and nisRK genes related to nisin production were developed. The simultaneous expression of nisA and nisZ genes was used to potentiate the effective inhibition of foodborne pathogens. Furthermore, qPCR analysis indicated that the nisA and nisRK genes were expressed at low levels in wild-type L. lactis subsp. lactis. After several re-transformations of the strain with the nisA and nisRK genes, a high expression of these genes was obtained, contributing to improved nisin production. Also, co-expression of the nisA and nisZ genes resulted in extremely effective antibacterial action. Hence, this study would provide an approach to enhancing nisin production during industrial processes and antimicrobial activity.
Collapse
Affiliation(s)
- Roxana Portieles
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Hongli Xu
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Feng Chen
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Jingyao Gao
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Lihua Du
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | - Xiangyou Gao
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
| | | | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People’s Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People’s Republic of China
| | - Nayanci Portal Gonzalez
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, People’s Republic of China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, People’s Republic of China
| | - Orlando Borrás-Hidalgo
- Joint R and D Center of Biotechnology, RETDA, YOTABIO-ENGINEERING CO., LTD., Rizhao, Shandong, P.R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People’s Republic of China
| |
Collapse
|
3
|
Papiran R, Hamedi J. Adaptive Evolution of Lactococcus Lactis to Thermal and Oxidative Stress Increases Biomass and Nisin Production. Appl Biochem Biotechnol 2021; 193:3425-3441. [PMID: 34196920 DOI: 10.1007/s12010-021-03609-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
High values of agitation and temperature lead to stressful conditions in the fermentations of Lactococcus lactis due to its aero-tolerant and mesophilic nature. Here, the adaptive laboratory evolution (ALE) technique was applied to increase biomass and nisin production yields by enhancing L. lactis subsp. lactis robustness at higher growth temperature and aeration rates. In two separate ALE experiments, after 162 serial transfers, optimum agitation and growth temperature of L. lactis were shifted from 40 rpm and 30 °C to 200 rpm and 37 °C, respectively. Oxidative and acid resistance were enhanced in the evolved strain. Whole-genome sequencing revealed the emergence of five single-nucleotide polymorphisms in the genome of the evolved strain in jag, DnaB, ArgR, cation transporter genes, and one putative protein. The evolved strain of L. lactis in this study has more industrial desirable features and improved nisin production capability and can act more efficiently in nisin production in stressful conditions.
Collapse
Affiliation(s)
- Reyhaneh Papiran
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
NisI Maturation and Its Influence on Nisin Resistance in Lactococcus lactis. Appl Environ Microbiol 2020; 86:AEM.01306-20. [PMID: 32709730 DOI: 10.1128/aem.01306-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
NisI confers immunity against nisin, with high substrate specificity to prevent a suicidal effect in nisin-producing Lactococcus lactis strains. However, the NisI maturation process as well as its influence on nisin resistance has not been characterized. Here, we report the roles of lipoprotein signal peptidase II (Lsp) and prolipoprotein diacylglyceryl transferase (Lgt) in NisI maturation and nisin resistance of L. lactis F44. We found that the resistance of nisin of an Lsp-deficient mutant remarkably decreased, while no significant differences in growth were observed. We demonstrated that Lsp could cleave signal peptide of NisI precursor in vitro Moreover, diacylglyceryl modification of NisI catalyzed by Lgt played a decisive role in attachment of NisI on the cell envelope, while it exhibited no effects on cleavage of the signal peptides of NisI precursor. The dissociation constant (KD ) for the interaction between nisin and NisI exhibited a 2.8-fold increase compared with that between nisin and pre-NisI with signal peptide by surface plasmon resonance (SPR) analysis, providing evidence that Lsp-catalyzed signal peptide cleavage was critical for the immune activity of NisI. Our study revealed the process of NisI maturation in L. lactis and presented a potential strategy to enhance industrial nisin production.IMPORTANCE Nisin, a safe and natural antimicrobial peptide, has a long and impressive history as a food preservative and is also considered a novel candidate to alleviate the increasingly serious threat of antibiotic resistance. Nisin is produced by certain L. lactis strains. The nisin immunity protein NisI, a membrane-bound lipoprotein, is expressed by nisin producers to avoid suicidal action. Here, we report the roles of Lsp and Lgt in NisI maturation and nisin resistance of L. lactis F44. The results verified the importance of Lsp to NisI-conferred immunity and Lgt to localization. Our study revealed the process of NisI maturation in L. lactis and presented a potential strategy to enhance industrial nisin production.
Collapse
|
5
|
Hong L, Cho CS, Kim WS, Choi YJ, Kang SK. Phthalyl starch nanoparticles as prebiotics enhanced nisin production in Lactococcus lactis through the induction of mild stress in probiotics. J Appl Microbiol 2020; 130:439-449. [PMID: 32500649 DOI: 10.1111/jam.14735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/19/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022]
Abstract
AIM OF THE STUDY Effect of internalized phthalyl starch nanoparticles (PSNs) on the antimicrobial ability of Lactococcus lactis (LL) KCTC 2013. METHODS AND RESULTS Phthalyl starch nanoparticles were prepared by self-assembly of phthalyl starch and the amount of the hydrophobic phthalic moieties were characterized by nuclear magnetic resonance: PSN1 (DS: 14·3 mol.%), PSN2 (DS: 17·8 mol.%) and PSN3 (DS: 30·4 mol.%). The sizes of PSN1, PSN2 and PSN3 measured by dynamic light scattering were 364·7, 248·4 and 213·4 nm, respectively, and the surface charges of PSNs measured by electrophoretic light scattering were negative charges and PSNs were spherical in shape according to scanning electron microscope. It was found that when PSNs were treated with LL, the PSNs were internalized into LL through nanoparticle size-, energy- and glucose transporter-dependent mechanisms. The internalization was confirmed by confocal laser scanning microscopy and fluorescence-activated cell sorting. Nisin was isolated and identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Also, more nisin was produced from PSNs-treated LL than untreated- or starch-treated LL. Co-culture assay and agar diffusion test were performed to test the antimicrobial ability. Antimicrobial ability against Gram-negative Escherichia coli k88, Salmonella gallinarum and Gram-positive Listeria monocytogenes of LL treated with PSNs was higher than that of untreated or starch-treated group. Finally, it was found that the expression level of stress response genes dnaK, dnaJ and groES was significantly higher in PSNs-treated groups compared with starch-treated group or LL alone. CONCLUSION The internalization of PSNs into LL enhanced the production of nisin through mild intracellular stimulation, resulting in enhanced antimicrobial ability. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the promising potential of PSNs as new prebiotics for increasing the production of nisin, thus demonstrating a new method for the biological production of such antimicrobial peptides.
Collapse
Affiliation(s)
- L Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - C-S Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - W-S Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Y-J Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - S-K Kang
- Institute of Green-Bio Science & Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Innovative approaches to nisin production. Appl Microbiol Biotechnol 2018; 102:6299-6307. [PMID: 29850958 DOI: 10.1007/s00253-018-9098-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 09/29/2022]
Abstract
Nisin is a bacteriocin produced by Lactococcus lactis that has been approved by the Food Drug Administration for utilization as a GRAS status food additive. Nisin can inhibit spore germination and demonstrates antimicrobial activity against Listeria, Clostridium, Staphylococcus, and Bacillus species. Under some circumstances, it plays an immune modulator role and has a selective cytotoxic effect against cancer cells, although it is notable that the high production cost of nisin-a result of the low nisin production yield of producer strains-is an important factor restricting intensive use. In recent years, production of nisin has been significantly improved through genetic modifications to nisin producer strains and through innovative applications in the fermentation process. Recently, 15,400 IU ml-1 nisin production has been achieved in L. lactis cells following genetic modifications by eliminating the factors that negatively affect nisin biosynthesis or by increasing the cell density of the producing strains in the fermentation medium. In this review, innovative approaches related to cell and fermentation systems aimed at increasing nisin production are discussed and interpreted, with a view to increasing industrial nisin production.
Collapse
|
7
|
Liu J, Zhou J, Wang L, Ma Z, Zhao G, Ge Z, Zhu H, Qiao J. Improving nitrogen source utilization from defatted soybean meal for nisin production by enhancing proteolytic function of Lactococcus lactis F44. Sci Rep 2017; 7:6189. [PMID: 28733629 PMCID: PMC5522456 DOI: 10.1038/s41598-017-06537-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Nisin, one kind of natural antimicrobial peptide, is produced by certain Lactococcus lactis strains, which generally require expensive high-quality nitrogen sources due to limited ability of amino acids biosynthesis. Here we use defatted soybean meal (DSM) as sole nitrogen source to support L. lactis growth and nisin production. DSM medium composition and fermentation conditions were optimized using the methods of Plackett-Burman design and central composite design. The highest nisin production of 3879.58 IU/ml was obtained in DSM medium, which was 21.3% higher than that of commercial medium. To further increase the utilization ability of nitrogen sources, we enhanced the proteolytic function in L. lactis through rationally expressing the related enzymes, which were selected according to the compositions of amino acids and molecular weight of peptides in DSM medium. Significantly, an artificial proteolytic system consisting of a heterologous protease (NprB), an oligopeptides transporter subunit (OppA) and two peptidases (PepF and PepM) was introduced into L.lactis. The constructed strain BAFM was capable of achieving efficient biomass accumulation and nisin yield with 30% decreased amount of DSM hydrolysates, which further reduced the cost of nisin production. The strategy described here offers opportunities for low-cost L. lactis fermentation and large-scale nisin production in industry.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jianjian Zhou
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lihong Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zelin Ma
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhiqiang Ge
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hongji Zhu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
8
|
Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain. ACTA ACUST UNITED AC 2014; 41:535-43. [DOI: 10.1007/s10295-013-1388-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Abstract
The limiting factors in the continuous production of nisin are high amount of biomass loss and low dilution rate application. In this study, a chitin-including continuous nisin fermentation system (CICON-FER) was constructed for high volumetric nisin production using nisin producer L. lactis displaying cell wall chitin-binding domain (ChBD) together with chitin in the reactor. In this respect, the highest binding conditions of relevant L. lactis cells to chitin were determined. Then the chitin flakes carrying nisin-producing L. lactis cells were used within the CICON-FER system at different dilution rates (0.1–0.9 h−1) and initial glucose concentrations (20–60 g l−1). The results revealed that the pH 7 conditions and the use of 100 mM sodium phosphate buffer with 0.1 % Tween 20 and Triton X-100 significantly increased the binding capacity of ChBD displaying L. lactis cells to chitin. The constructed CICON-FER system maintained the presence of the ChBD surface displaying L. lactis cells in the reactor system until 0.9 h−1 dilution rate that resulted in a considerably high level of volumetric nisin production and productivity (10,500 IU ml−1 and 9,450 IU ml−1 h−1, respectively) with the combination of a 0.9-h−1 dilution rate and a 40-g l−1 initial glucose concentration. In conclusion, an innovative nisin fermentation system that yielded the highest nisin production thus far and that was feasible for industrial application was created.
Collapse
|