1
|
Klausser R, Kopp J, Prada Brichtova E, Gisperg F, Elshazly M, Spadiut O. State-of-the-art and novel approaches to mild solubilization of inclusion bodies. Front Bioeng Biotechnol 2023; 11:1249196. [PMID: 37545893 PMCID: PMC10399460 DOI: 10.3389/fbioe.2023.1249196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.
Collapse
Affiliation(s)
- Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
2
|
Mondol E, Donado K, Regino R, Hernandez K, Mercado D, Mercado AC, Benedetti I, Puerta L, Zakzuk J, Caraballo L. The Allergenic Activity of Blo t 2, a Blomia tropicalis IgE-Binding Molecule. Int J Mol Sci 2023; 24:ijms24065543. [PMID: 36982614 PMCID: PMC10053487 DOI: 10.3390/ijms24065543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Only few allergens derived from house dust mite (HDM) species have been evaluated in terms of their potential to induce allergic inflammation. In this study, we aimed to evaluate different aspects of the allergenicity and allergenic activity of Blo t 2, a Blomia tropicalis allergen. Blo t 2 was produced as a recombinant protein in Escherichia coli. Its allergenic activity was tested in humans by skin prick test and basophil activation assays, and in mice, by passive cutaneous anaphylaxis and a model of allergic airway inflammation. Sensitization rate to Blo t 2 (54.3%) was similar to that found to Blo t 21 (57.2%) and higher than to Der p 2 (37.5%). Most Blo t 2-sensitized patients showed a low intensity response (99.5%). Blo t 2 elicited CD203c upregulation and allergen induced skin inflammation. Additionally, immunized animals produced anti-Blo t 2 IgE antibodies and passive transfer of their serum to non-immunized animals induced skin inflammation after allergen exposure. Immunized animals developed bronchial hyperreactivity and a strong inflammatory lung reaction (eosinophils and neutrophils). These results confirm the allergenic activity of Blo t 2 and supports its clinical relevance.
Collapse
|
3
|
Zia MA, Shah MS, Shafqat Ali Khan R, Farooq U, Shafi J, Habib M. High level expression and purification of recombinant 3ABC non-structural protein of foot-and-mouth disease virus using SUMO fusion system. Protein Expr Purif 2021; 191:106025. [PMID: 34826607 DOI: 10.1016/j.pep.2021.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The detection of antibody to non-structural protein (NSP) of Foot-and-mouth disease virus (FMDV) is the reliable diagnostic method for differentiating infected from vaccinated animals (DIVA). For this purpose, the detection of antibodies to non-structural 3ABC protein is suitable for identification of virus activity in the animals exposed to FMDV infection. However, large-scale production of recombinant 3ABC protein is challenging due to the formation of inclusion bodies in Escherichia coli and low yield due to protein aggregation during in vitro refolding. In this study, 3ABC gene was fused with SUMO (small ubiquitin-like modifiers) fusion system which significantly enhanced expression of recombinant 3ABC protein in E. coli. The solubility of the recombinant 6xHis-SUMO 3ABC fusion protein was improved by mild detergent treatment and purified through Ni-NTA chromatography under non-denaturing conditions which yielded 9 mg protein obtained from 1-L bacterial fermentation culture. The diagnostic potential of recombinant 3ABC protein was also tested by ELISA that provided reliable diagnostic performance (DSn = 92%, DSp = 94%) upon comparison with commercially available kit. The thermal stability of fusion protein was also tested which presented reliable performance at different temperatures. In conclusion, we presented SUMO fusion for the enhanced expression in E. coli and purification of active recombinant 3ABC protein using non-denaturing conditions without refolding steps. This protein can be used as a suitable diagnostic antigen to detect antibodies following FMDV infection.
Collapse
Affiliation(s)
- Muhammad Ashir Zia
- College of Biological Sciences, Nuclear Institute for Agriculture and Biology College, (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, 44000, Islamabad, Pakistan; Vaccine Development Group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Jhang Road, P.O Box 128, Faisalabad, 38000, Pakistan.
| | - Muhammad Salahuddin Shah
- College of Biological Sciences, Nuclear Institute for Agriculture and Biology College, (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, 44000, Islamabad, Pakistan; Vaccine Development Group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Jhang Road, P.O Box 128, Faisalabad, 38000, Pakistan
| | - Rai Shafqat Ali Khan
- College of Biological Sciences, Nuclear Institute for Agriculture and Biology College, (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, 44000, Islamabad, Pakistan; Vaccine Development Group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Jhang Road, P.O Box 128, Faisalabad, 38000, Pakistan
| | - Umer Farooq
- Animal Health Laboratories, Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Jamila Shafi
- Livestock and Dairy Development, Faisalabad, 38040, Punjab, Pakistan
| | - Mudasser Habib
- College of Biological Sciences, Nuclear Institute for Agriculture and Biology College, (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, 44000, Islamabad, Pakistan; Vaccine Development Group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Jhang Road, P.O Box 128, Faisalabad, 38000, Pakistan
| |
Collapse
|
4
|
Haase S, Condron M, Miller D, Cherkaoui D, Jordan S, Gulbis JM, Baum J. Identification and characterisation of a phospholipid scramblase in the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2021; 243:111374. [PMID: 33974939 PMCID: PMC8202325 DOI: 10.1016/j.molbiopara.2021.111374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Recent studies highlight the emerging role of lipids as important messengers in malaria parasite biology. In an attempt to identify interacting proteins and regulators of these dynamic and versatile molecules, we hypothesised the involvement of phospholipid translocases and their substrates in the infection of the host erythrocyte by the malaria parasite Plasmodium spp. Here, using a data base searching approach of the Plasmodium Genomics Resources (www.plasmodb.org), we have identified a putative phospholipid (PL) scramblase in P. falciparum (PfPLSCR) that is conserved across the genus and in closely related unicellular algae. By reconstituting recombinant PfPLSCR into liposomes, we demonstrate metal ion dependent PL translocase activity and substrate preference, confirming PfPLSCR as a bona fide scramblase. We show that PfPLSCR is expressed during asexual and sexual parasite development, localising to different membranous compartments of the parasite throughout the intra-erythrocytic life cycle. Two different gene knockout approaches, however, suggest that PfPLSCR is not essential for erythrocyte invasion and asexual parasite development, pointing towards a possible role in other stages of the parasite life cycle.
Collapse
Affiliation(s)
- Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| | - Melanie Condron
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - David Miller
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dounia Cherkaoui
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Jacqueline M Gulbis
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| |
Collapse
|
5
|
Are cysteine residues of human phospholipid scramblase 1 essential for Pb 2+ and Hg 2+ binding-induced scrambling of phospholipids? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:745-757. [PMID: 33787949 DOI: 10.1007/s00249-021-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/06/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Lead and mercury being common environmental pollutants are often associated with erythrocytes, where phosphatidylserine (PS) exposure-mediated procoagulant activation is induced. Human phospholipid scramblase 1 (hPLSCR1) identified in the erythrocyte membrane is a type II transmembrane protein involved in Ca2+-dependent bidirectional scrambling of phospholipids (PL) during blood coagulation, cell activation, and apoptosis. The prominent role of hPLSCR1 in Pb2+ and Hg2+ poisoning was demonstrated by a biochemical assay, where recombinant hPLSCR1 induced PL scrambling across bilayer with a higher binding affinity (Kd) towards Hg2+ (4.1 µM) and Pb2+ (5.8 µM) than Ca2+ (25.6 mM). The increased affinity could be the outcome of heavy metals interacting at auxiliary sites other than the calcium-binding motif of hPLSCR1. Similar to other metal-binding proteins, cysteine-based metal-binding motifs could be the potential additional binding sites in hPLSCR1. To explore the hypothesis, the cysteines were chemically modified, which significantly reduced only the Hg2+- and Pb2+-induced scrambling activity leaving Ca2+-induced activity unaltered. Recombinant constructs with deletion of prominent cysteine residues and point mutation in the calcium-binding motif including Δ100-hPLSCR1, Δ160-hPLSCR1, and D275A-hPLSCR1 were generated, purified, and assayed for scramblase activity. The cysteine-deleted constructs of hPLSCR1 showed reduced binding affinity (Kd) for Hg2+ and Pb2+ without altering the Ca2+-binding affinity whereas the point mutant had completely lost its affinity for Ca2+ and reduced affinities for Hg2+ and Pb2+. The results accentuated the significance of cysteine residues as additional binding sites for heavy metal ions in hPLSCR1.
Collapse
|
6
|
Cholesterol interaction attenuates scramblase activity of SCRM-1 in the artificial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183548. [PMID: 33417966 DOI: 10.1016/j.bbamem.2020.183548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/09/2023]
Abstract
Phospholipid (PL) scramblases are single-pass transmembrane protein mediating bidirectional PL translocation. Previously in silico analysis of human PL scramblases, predicted the presence of an uncharacterized cholesterol-binding domain spanning partly in the transmembrane helix as well as in the adjacent extracellular coil. This domain was found to be universally conserved in diverse organisms like Caenorhabditis elegans. In this study, we investigated the saturable cholesterol-binding domain of SCRM-1 using fluorescence sterol binding assay, Stern-Volmer quenching, Förster resonance energy transfer, and CD spectroscopy. We observed high-affinity interaction between cholesterol and SCRM-1. Our results support a previous report, which showed that the cholesterol ordering effect reduced the scramblase activity of hPLSCR1. Considering the presence of a high-affinity binding sequence, we propose that the reduction in activity could partly be due to the cholesterol binding. To validate this, we generated a C-terminal helix (CTH) deletion construct (∆CTH SCRM-1) and a point mutation in the putative cholesterol-binding domain I273D SCRM-1. Deletion construct greatly reduced cholesterol affinity along with loss of scramblase activity. In contrast to this, I273D SCRM-1 retained scrambling activity in proteoliposomes containing ~30 mol% cholesterol but lost sterol binding ability. These results suggest that C-terminal helix is crucial for membrane insertion and in the lipid bilayer the scrambling activity of SCRM-1 is modulated through its interaction with cholesterol.
Collapse
|
7
|
Polystyrene adsorbents: rapid and efficient surrogate for dialysis in membrane protein purification. Sci Rep 2020; 10:16334. [PMID: 33005012 PMCID: PMC7529760 DOI: 10.1038/s41598-020-73522-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/15/2020] [Indexed: 11/08/2022] Open
Abstract
Membrane protein purification is a laborious, expensive, and protracted process involving detergents for its extraction. Purifying functionally active form of membrane protein in sufficient quantity is a major bottleneck in establishing its structure and understanding the functional mechanism. Although overexpression of the membrane proteins has been achieved by recombinant DNA technology, a majority of the protein remains insoluble as inclusion bodies, which is extracted by detergents. Detergent removal is essential for retaining protein structure, function, and subsequent purification techniques. In this study, we have proposed a new approach for detergent removal from the solubilized extract of a recombinant membrane protein: human phospholipid scramblase 3 (hPLSCR3). N-lauryl sarcosine (NLS) has been established as an effective detergent to extract the functionally active recombinant 6X-his- hPLSCR3 from the inclusion bodies. NLS removal before affinity-based purification is essential as the detergent interferes with the matrix binding. Detergent removal by adsorption onto hydrophobic polystyrene beads has been methodically studied and established that the current approach was 10 times faster than the conventional dialysis method. The study established the potency of polystyrene-based beads as a convenient, efficient, and alternate tool to dialysis in detergent removal without significantly altering the structure and function of the membrane protein.
Collapse
|
8
|
Molecular cloning and biochemical characterization of the phospholipid scramblase SCRM-1 from Caenorhabditis elegans. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:163-173. [DOI: 10.1007/s00249-020-01423-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
9
|
Mustafa AD, Kalyanasundram J, Sabidi S, Song AAL, Abdullah M, Abdul Rahim R, Yusoff K. Recovery of recombinant Mycobacterium tuberculosis antigens fused with cell wall-anchoring motif (LysM) from inclusion bodies using non-denaturing reagent (N-laurylsarcosine). BMC Biotechnol 2019; 19:27. [PMID: 31088425 PMCID: PMC6518676 DOI: 10.1186/s12896-019-0522-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The current limitations of conventional BCG vaccines highlights the importance in developing novel and effective vaccines against tuberculosis (TB). The utilization of probiotics such as Lactobacillus plantarum for the delivery of TB antigens through in-trans surface display provides an effective and safe vaccine approach against TB. Such non-recombinant probiotic surface display strategy involves the fusion of candidate proteins with cell wall binding domain such as LysM, which enables the fusion protein to anchor the L. plantarum cell wall externally, without the need for vector genetic modification. This approach requires sufficient production of these recombinant fusion proteins in cell factory such as Escherichia coli which has been shown to be effective in heterologous protein production for decades. However, overexpression in E. coli expression system resulted in limited amount of soluble heterologous TB-LysM fusion protein, since most of it are accumulated as insoluble aggregates in inclusion bodies (IBs). Conventional methods of denaturation and renaturation for solubilizing IBs are costly, time-consuming and tedious. Thus, in this study, an alternative method for TB antigen-LysM protein solubilization from IBs based on the use of non-denaturating reagent N-lauroylsarcosine (NLS) was investigated. RESULTS Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days). CONCLUSION The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.
Collapse
Affiliation(s)
- Anhar Danial Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sarah Sabidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Malaysia Genome Institute, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
10
|
Mustafa AD, Kalyanasundram J, Sabidi S, Song AAL, Abdullah M, Abdul Rahim R, Yusoff K. Proof of concept in utilizing in-trans surface display system of Lactobacillus plantarum as mucosal tuberculosis vaccine via oral administration in mice. BMC Biotechnol 2018; 18:63. [PMID: 30309359 PMCID: PMC6182793 DOI: 10.1186/s12896-018-0461-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
Background Tuberculosis is one of the most common and deadliest infectious diseases worldwide affecting almost a third of the world’s population. Although this disease is being prevented and controlled by the Bacille Calmette Guérin (BCG) vaccine, the protective efficacy is highly variable and substandard (0–80%) in adults. Therefore, novel and effective tuberculosis vaccine that can overcome the limitations from BCG vaccine need to be developed. Results A novel approach of utilizing an in-trans protein surface display system of Lactobacillus plantarum carrying and displaying combination of Mycobacterium tuberculosis subunit epitope antigens (Ag85B, CFP-10, ESAT-6, Rv0475 and Rv2031c) fused with LysM anchor motif designated as ACERL was constructed, cloned and expressed in Esherichia coli Rossetta expression host. Subsequently the binding capability of ACERL to the cell wall of L. plantarum was examined via the immunofluorescence microscopy and whole cell ELISA where successful attachment and consistent stability of cell wall binding up to 4 days was determined. The immunization of the developed vaccine of L. plantarum surface displaying ACERL (Lp ACERL) via the oral route was studied in mice for its immunogenicity effects. Lp ACERL immunization was able to invoke significant immune responses that favor the Th1 type cytokine response of IFN-γ, IL-12 and IL-2 as indicated by the outcome from the cytokine profiling of spleen, lung, gastrointestinal tract (GIT), and the re-stimulation of the splenocytes from the immunized mice. Co-administration of an adjuvant consisting of Lactococcus lactis secreting mouse IL-12 (LcIL-12) with Lp ACERL was also investigated. It was shown that the addition of LcIL-12 was able to further generate significant Th1 type cytokines immune responses, similar or better than that of Lp ACERL alone which can be observed from the cytokine profiling of the immunized mice’s spleen, lung and GIT. Conclusions This study represents a proof of concept in the development of L. plantarum as a carrier for a non-genetically modified organism (GMO) tuberculosis vaccine, which may be the strategy in the future for tuberculosis vaccine development. Electronic supplementary material The online version of this article (10.1186/s12896-018-0461-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anhar Danial Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarah Sabidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Malaysia Genome Institute, 43000, Kajang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Palanirajan SK, Gummadi SN. Rapid method for an enhanced recovery of biologically active human phospholipid scramblase1 from inclusion bodies. Anal Biochem 2018; 556:104-111. [DOI: 10.1016/j.ab.2018.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023]
|
12
|
Palanirajan SK, Sivagnanam U, Murugan S, Gummadi SN. In vitro reconstitution and biochemical characterization of human phospholipid scramblase 3: phospholipid specificity and metal ion binding studies. Biol Chem 2018; 399:361-374. [DOI: 10.1515/hsz-2017-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023]
Abstract
AbstractHuman phospholipid scramblase 3 (hPLSCR3) is a single pass transmembrane protein that plays a vital role in fat metabolism, mitochondrial function, structure, maintenance and apoptosis. The mechanism of action of scramblases remains still unknown, and the role of scramblases in phospholipid translocation is heavily debated. hPLSCR3 is the only member of scramblase family localized to mitochondria and is involved in cardiolipin translocation at the mitochondrial membrane. Direct biochemical evidence of phospholipid translocation by hPLSCR3 is yet to be reported. Functional assay in synthetic proteoliposomes upon Ca2+and Mg2+revealed that, apart from cardiolipin, recombinant hPLSCR3 translocates aminophospholipids such as NBD-PE and NBD-PS but not neutral phospholipids. Point mutation in hPLSCR3 (F258V) resulted in decreased Ca2+binding affinity. Functional assay with F258V-hPLSCR3 led to ~50% loss in scramblase activity in the presence of Ca2+and Mg2+. Metal ion-induced conformational changes were monitored by intrinsic tryptophan fluorescence, circular dichroism, surface hydrophobicity changes and aggregation studies. Our results revealed that Ca2+and Mg2+bind to hPLSCR3 and trigger conformational changes mediated by aggregation. In summary, we suggest that the metal ion-induced conformational change and the aggregation of the protein are essential for the phospholipid translocation by hPLSCR3.
Collapse
|
13
|
Sivagnanam U, Palanirajan SK, Gummadi SN. The role of human phospholipid scramblases in apoptosis: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2261-2271. [PMID: 28844836 DOI: 10.1016/j.bbamcr.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Human phospholipid scramblases (hPLSCRs) are a family of four homologous single pass transmembrane proteins (hPLSCR1-4) initially identified as the proteins responsible for Ca2+ mediated bidirectional phospholipid translocation in plasma membrane. Though in-vitro assays had provided evidence, the role of hPLSCRs in phospholipid translocation is still debated. Recent reports revealed a new class of proteins, TMEM16 and Xkr8 to exhibit scramblase activity challenging the function of hPLSCRs. Apart from phospholipid scrambling, numerous reports have emphasized the multifunctional roles of hPLSCRs in key cellular processes including tumorigenesis, antiviral defense, protein and DNA interactions, transcriptional regulation and apoptosis. In this review, the role of hPLSCRs in mediating cell death through phosphatidylserine exposure, interaction with death receptors, cardiolipin exposure, heavy metal and radiation induced apoptosis and pathological apoptosis followed by their involvement in cancer cells are discussed. This review aims to connect the multifunctional characteristics of hPLSCRs to their decisive involvement in apoptotic pathways.
Collapse
Affiliation(s)
- Ulaganathan Sivagnanam
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Santosh Kumar Palanirajan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
14
|
Sivagnanam U, Narayana Murthy S, Gummadi SN. Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1. BMC BIOCHEMISTRY 2016; 17:10. [PMID: 27206388 PMCID: PMC4875679 DOI: 10.1186/s12858-016-0067-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Background Human phospholipid scramblase 1 (hPLSCR1) was initially identified as a Ca2+ dependent phospholipid translocator involved in disrupting membrane asymmetry. Recent reports revealed that hPLSCR1 acts as a multifunctional signaling molecule rather than functioning as scramblase. hPLSCR1 is overexpressed in a variety of tumor cells and is known to interact with a number of protein molecules implying diverse functions. Results In this study, the nuclease activity of recombinant hPLSCR1 and its biochemical properties have been determined. Point mutations were generated to identify the critical region responsible for the nuclease activity. Recombinant hPLSCR1 exhibits Mg2+ dependent nuclease activity with an optimum pH and temperature of 8.5 and 37 °C respectively. Experiments with amino acid modifying reagents revealed that histidine, cysteine and arginine residues were crucial for its function. hPLSCR1 has five histidine residues and point mutations of histidine residues to alanine in hPLSCR1 resulted in 60 % loss in nuclease activity. Thus histidine residues could play a critical role in the nuclease activity of hPLSCR1. Conclusions This is the first report on the novel nuclease activity of the multi-functional hPLSCR1. hPLSCR1 shows a metal dependent nuclease activity which could play a role in key cellular processes that needs to be further investigated.
Collapse
Affiliation(s)
- Ulaganathan Sivagnanam
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Shweta Narayana Murthy
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Sathyanarayana N Gummadi
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
15
|
Slone EA, Fleming SD. Membrane lipid interactions in intestinal ischemia/reperfusion-induced Injury. Clin Immunol 2014; 153:228-40. [PMID: 24814240 DOI: 10.1016/j.clim.2014.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/02/2023]
Abstract
Ischemia, lack of blood flow, and reperfusion, return of blood flow, are a common phenomenon affecting millions of Americans each year. Roughly 30,000 Americans per year experience intestinal ischemia-reperfusion (IR), which is associated with a high mortality rate. Previous studies of the intestine established a role for neutrophils, eicosanoids, the complement system and naturally occurring antibodies in IR-induced pathology. Furthermore, data indicate involvement of a lipid or lipid-like moiety in mediating IR-induced damage. It has been proposed that antibodies recognize exposure of neo-antigens, triggering action of the complement cascade. While it is evident that the pathophysiology of IR-induced injury is complex and multi-factorial, we focus this review on the involvement of eicosanoids, phospholipids and neo-antigens in the early pathogenesis. Lipid changes occurring in response to IR, neo-antigens exposed and the role of a phospholipid transporter, phospholipid scramblase 1 will be discussed.
Collapse
Affiliation(s)
- Emily Archer Slone
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
16
|
Rayala S, Francis VG, Sivagnanam U, Gummadi SN. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. J Biol Chem 2014; 289:13206-18. [PMID: 24648509 DOI: 10.1074/jbc.m113.522953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human phospholipid scramblase 1 (hPLSCR1), a type II integral class membrane protein, is known to mediate bidirectional scrambling of phospholipids in a Ca(2+)-dependent manner. hPLSCR2, a homolog of hPLSCR1 that lacks N-terminal proline-rich domain (PRD), did not show scramblase activity. We attribute this absence of scramblase activity of hPLSCR2 to the lack of N-terminal PRD. Hence to investigate the above hypothesis, we added the PRD of hPLSCR1 to hPLSCR2 (PRD-hPLSCR2) and checked whether scramblase activity was restored. Functional assays showed that the addition of PRD to hPLSCR2 restored scrambling activity, and deletion of PRD in hPLSCR1 (ΔPRD-hPLSCR1) resulted in a lack of activity. These results suggest that PRD is crucial for the function of the protein. The effects of the PRD deletion in hPLSCR1 and the addition of PRD to hPLSCR2 were characterized using various spectroscopic techniques. Our results clearly showed that hPLSCR1 and PRD-hPLSCR2 showed Ca(2+)-dependent aggregation and scrambling activity, whereas hPLSCR2 and ΔPRD-hPLSCR1 did not show aggregation and activity. Thus we conclude that scramblases exhibit Ca(2+)-dependent scrambling activity by aggregation of protein. Our results provide a possible mechanism for phospholipid scrambling mediated by PLSCRs and the importance of PRD in its function and cellular localization.
Collapse
Affiliation(s)
- Sarika Rayala
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | | | |
Collapse
|
17
|
Francis VG, Mohammed AM, Aradhyam GK, Gummadi SN. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. FEBS J 2013; 280:2855-69. [PMID: 23590222 DOI: 10.1111/febs.12289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/12/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
Human phospholipid scramblase 1 (hPLSCR1) belongs to the ATP-independent class of phospholipid translocators which possess a single EF-hand-like Ca(2+)-binding motif and also a C-terminal helix (CTH). The CTH domain of hPLSCR1 was believed to be a putative single transmembrane helix at the C-terminus. Recent homology modeling studies by Bateman et al. predicted that the hydrophobic nature of this helix is due to its packing in the core of the protein domain and proposed that this is not a true transmembrane helix [Bateman A, Finn RD, Sims PJ, Wiedmer T, Biegert A & Johannes S. Bioinformatics 2008, 25, 159]. To determine the exact function of the CTH of hPLSCR1, we deleted the CTH domain and determined: (a) whether CTH plays any role beyond membrane anchorage, (b) the functional consequences of CTH deletion, and (c) any conformational changes associated with CTH in a lipid environment. In vitro reconstitution studies confirm that the predicted CTH is required for membrane insertion and scrambling activity. CTH deletion caused a 50% decrease in binding affinity of Ca(2+) for ∆CTH-hPLSCR1 (K(a) = 115 μM) compared with hPLSCR1 (K(a) = 249 μM). Far UV-CD studies revealed that the CTH peptide adopts α-helicity only in the presence of SDS micelles and negatively charged vesicles, indicating that electrostatic interactions are required for insertion of the peptide. CTH peptide-quenching studies confirm that the predicted CTH inserts into the membrane and its ability to interact with the membrane depends on the presence of charge interactions. TOXCAT assay revealed that CTH of hPLSCR1 does not oligomerize in the membrane. We conclude that CTH is required for membrane insertion and Ca(2+) coordination and also plays an important role in the functional conformation of hPLSCR1.
Collapse
Affiliation(s)
- Vincent G Francis
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | | | | | |
Collapse
|
18
|
Shettihalli AK, Gummadi SN. Biochemical evidence for lead and mercury induced transbilayer movement of phospholipids mediated by human phospholipid scramblase 1. Chem Res Toxicol 2013; 26:918-25. [PMID: 23659204 DOI: 10.1021/tx400090h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human phospholipid scramblase 1(hPLSCR1) is a transmembrane protein involved in bidirectional scrambling of plasma membrane phospholipids during cell activation, blood coagulation, and apoptosis in response to elevated intracellular Ca(2+) levels. Pb(2+) and Hg(2+) are known to cause procoagulant activation via phosphatidylserine exposure to the external surface in erythrocytes, resulting in blood coagulation. To explore its role in lead and mercury poisoning, hPLSCR1 was overexpressed in Escherichia coli BL21 (DE3) and purified using affinity chromatography. The biochemical assay showed rapid scrambling of phospholipids in the presence of Hg(2+) and Pb(2+). The binding constant (Ka) was calculated and found to be 250 nM(-1) and 170 nM(-1) for Hg(2+) and Pb(2+), respectively. The intrinsic tryptophan fluorescence and far ultraviolet circular dichroism studies revealed that Hg(2+) and Pb(2+) bind to hPLSCR1 and induce conformational changes. hPLSCR1 treated with protein modifying reagent N-ethylmaleimide before functional reconstitution showed 40% and 24% inhibition in the presence of Hg(2+) and Pb(2+), respectively. This is the first biochemical evidence to prove the above hypothesis that hPLSCR1 is activated in heavy metal poisoning, which leads to bidirectional transbilayer movement of phospholipids.
Collapse
Affiliation(s)
- Ashok Kumar Shettihalli
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | | |
Collapse
|