1
|
Bobadilla Alvarez MC, Palomino Cadenas EJ. CONTROL DE Aedes aegypti (DIPTERA: CULICIDAE) MEDIANTE ACTINOBACTERIAS FORMADORAS DE BIOPELÍCULAS. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.86966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El phylum Actinobacteria incluye miembros productores de compuestos bioinsecticidas. No obstante, la sobreexplotacion de metabolitos derivados de Streptomyces ha conllevado a explorar nuevas moléculas provenientes de bacterias no estreptomicetos para contrarrestar la resistencia a insecticidas químicos en Aedes aegypti. Concordantes con el uso de bioagentes ecológicos, esta investigación caracterizó actinobacterias formadoras de biopelículas con el fin de evaluar su dinámica de crecimiento, actividad larvicida y efectos subletales. La identificación, crecimiento de biopelículas y bioactividades se realizaron por cultivos, análisis de imágenes por fotomicrografía y bioensayos. Los resultados mostraron que las biopelículas pertenecen a Pseudonocardiaceae (PsA1TA) y Corynebacteriaceae (CoA2CA) característicamente dependientes del revestimiento cuticular. PsA1TA coloniza estructuras membranosas de tórax y abdomen con microcolonias aleatoriamente distribuidas que desarrollan a extensas biopelículas mono y biestratificadas, al cubrir cuatro veces la amplitud toracoabdominal (envergadura infectiva entre 1010 µm a 1036 µm). En contraste, CoA2CA envuelve radialmente estructuras esclerotizadas cefálica y anal al triplicar la amplitud de tales órganos (1820 a 2030 µm y 1650 a 1860 µm, respectivamente). Las biopelículas ejercieron mortalidad diferenciada a todos los estadios larvales, no obstante, PsA1TA resultó más mortal y virulento en el segundo estadio larval (58 %-96 horas, TL50: 3,4 días), mientras que CoA2CA lo fue en el cuarto estadio larval (85 %-96 horas, TL50: 2,5 días). CoA2CA indujo emergencia incompleta de adultos farados y despliegue de tarsos curvos en emergentes, además de revestir con robustas biopelículas cadáveres larvarios. Las biopelículas actinobacterianas revelaron ejercer función larvicida y respuestas subletales en A. aegypti.
Collapse
|
2
|
Wang C, Ren X, Yu C, Wang J, Wang L, Zhuge X, Liu X. Physiological and Transcriptional Responses of Streptomyces albulus to Acid Stress in the Biosynthesis of ε-Poly-L-lysine. Front Microbiol 2020; 11:1379. [PMID: 32636829 PMCID: PMC7317143 DOI: 10.3389/fmicb.2020.01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Streptomyces albulus has commercially been used for the production of ε-poly-L-lysine (ε-PL), a natural food preservative, where acid stress is inevitably encountered in the biosynthesis process. To elucidate the acid tolerance response (ATR), a comparative physiology and transcriptomic analysis of S. albulus M-Z18 at different environmental pH (5.0, 4.0, and 3.0) was carried out. In response to acid stress, cell envelope regulated the membrane fatty acid composition and chain length to reduce damage. Moreover, intracellular pH homeostasis was maintained by increasing H+-ATPase activity and intracellular ATP and amino acid (mainly arginine, glutamate, aspartate and lysine) concentrations. Transcriptional analysis based on RNA-sequencing indicated that acid stress aroused global changes and the differentially expressed genes involved in transcriptional regulation, stress-response protein, transporter, cell envelope, secondary metabolite biosynthesis, DNA and RNA metabolism and ribosome subunit. Consequently, the ATR of S. albulus was preliminarily proposed. Notably, it is indicated that the biosynthesis of ε-PL is also a response mechanism for S. albulus to combat acid stress. These results provide new insights into the ATR of S. albulus and will contribute to the production of ε-PL via adaptive evolution or metabolic engineering.
Collapse
Affiliation(s)
- Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xidong Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Junming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Zhuge
- Process Development Department, IntellectiveBio Co., Ltd., Suzhou, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
4
|
Enhanced ε-poly-L-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus. Bioprocess Biosyst Eng 2016; 40:271-283. [PMID: 27807681 DOI: 10.1007/s00449-016-1695-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
ε-Poly-L-lysine (ε-PL), as a food additive, has been widely used in many countries. However, its production still needs to be improved. We successfully enhanced ε-PL production of Streptomyces albulus FEEL-1 by introducing mutations related to antibiotics, such as streptomycin, gentamicin, and rifampin. Single- and double-resistant mutants (S-88 and SG-31) were finally screened with the improved ε-PL productions of 2.81 and 3.83 g/L, 1.75- to 2.39-fold compared with that of initial strain FEEL-1. Then, the performances of mutants S-88 and SG-31 were compared with the parent strain FEEL-1 in a 5-L bioreactor under the optimal condition for ε-PL production. After 174-h fed-batch fermentation, the ε-PL production and productivity of hyper-strain SG-31 reached the maximum of 59.50 g/L and 8.21 g/L/day, respectively, which was 138 and 105% higher than that of FEEL-1. Analysis of streptomycin-resistant mutants demonstrated that a point mutation occurred in rpsL gene (encoding the ribosomal protein S12). These single and double mutants displayed remarkable increases of the activities and transcriptional levels of key enzymes in ε-PL biosynthesis pathway, which may be responsible for the enhanced mycelia viability, respiratory activity, and ε-PL productions of SG-31. These results showed that the new breeding method, called ribosome engineering, could be a novel and effective breeding strategy for the evolution of ε-PL-producing strains.
Collapse
|
6
|
Ren XD, Chen XS, Zeng X, Wang L, Tang L, Mao ZG. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products. Bioprocess Biosyst Eng 2015; 38:1113-25. [PMID: 25605030 DOI: 10.1007/s00449-015-1354-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022]
Abstract
ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces.
Collapse
Affiliation(s)
- Xi-Dong Ren
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | | | | | | | | | | |
Collapse
|