1
|
Cauduro GP, Marmitt M, Ferraz M, Arend SN, Kern G, Modolo RCE, Leal AL, Valiati VH. Burkholderia vietnamiensis G4 as a biological agent in bioremediation processes of polycyclic aromatic hydrocarbons in sludge farms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:116. [PMID: 36394643 DOI: 10.1007/s10661-022-10733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the main pollutants generated by the refining and use of oil. To search bioremediation alternatives for these compounds, mainly in situ, considering the biotic and abiotic variables that affect the contaminated sites is determinant for the success of bioremediation techniques. In this study, bioremediation strategies were evaluated in situ, including biostimulation and bioaugmentation for 16 priority PAHs present in activated sludge farms. B. vietnamiensis G4 was used as a biodegradation agent for bioaugmentation tests. The analyses occurred for 12 months, and temperature and humidity were measured to verify the effects of these factors on the biodegradation. We used the technique GC-MS to evaluate and quantify the degradation of PAHs over the time of the experiment. Of the four treatments applied, bioaugmentation with quarterly application proved to be the best strategy, showing the degradation of compounds of high (34.4% annual average) and low (21.9% annual average) molecular weight. A high degradation rate for high molecular weight compounds demonstrates that this technique can be successfully applied in bioremediation of areas with compounds considered toxic and stable in nature, contributing to the mitigation of impacts generated by PAHs.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Marcela Marmitt
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Marlon Ferraz
- Laboratory of Fish Ecology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), São Leopoldo, RS, Brazil
| | - Sabrina Nicole Arend
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Gabriela Kern
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Regina Célia Espinosa Modolo
- Programa de Pós-Graduação Em Engenharia Civil, Escola Politécnica, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), São Leopoldo, RS, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, SITEL/CORSAN, Companhia Riograndense de Saneamento, Polo Petroquímico Do Sul, Triunfo, RS, Brazil
| | - Victor Hugo Valiati
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|
2
|
Correa-Galeote D, Roibás A, Mosquera-Corral A, Juárez-Jiménez B, González-López J, Rodelas B. Salinity is the major driver of the global eukaryotic community structure in fish-canning wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112623. [PMID: 33901822 DOI: 10.1016/j.jenvman.2021.112623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fish-canning wastewater is characterized frequently by a high content of salt (NaCl), making its treatment particularly difficult; however, the knowledge of the effect of NaCl on eukaryotic communities is very limited. In the present study, the global diversity of eukaryotes in activated sludges (AS) from 4 different wastewater treatment plants (WWTPs) treating fish-canning effluents varying in salinity (0.47, 1.36, 1.72 and 12.76 g NaCl/L) was determined by sequencing partial 18S rRNA genes using Illumina MiSeq. A greater diversity than previously reported was observed in the AS community, which comprised 37 and 330 phylum-like and genera-like groups, respectively. In this sense, the more abundant genus-like groups (average relative abundance (RA) > 5%) were Adineta (6.80%), Lecane (16.80%), Dictyostelium (7.36%), Unclassified_Fungi7 (6.94%), Procryptobia (5.13) and Oocystis (5.07%). The eukaryotic communities shared a common core of 25 phylum-like clades (95% of total sequences); therefore, a narrow selection of the eukaryotic populations was found, despite the differences in the abiotic characteristics of fish-canning effluents and reactor operational conditions inflicted. The differences in NaCl concentration were the main factor that influenced the structure of the eukaryotic community, modulating the RAs of the different phylum-like clades of the common core. Higher levels of salt increased the RAs of Ascomycota, Chlorophyta, Choanoflagellata, Cryptophyta, Mollusca, Nematoda, Other Protists and Unclassified Fungi. Among the different eukaryotic genera here found, the RA of Oocystis (Chlorophyta) was intimately correlated to increasing NaCl concentrations and it is proposed as a bioindicator of the global eukaryotic community of fish-canning WWTPs.
Collapse
Affiliation(s)
- David Correa-Galeote
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain.
| | - Alba Roibás
- Universidade de Santiago de Compostela. Escuela de Ingeniería. Dpto. de Ingeniería Química, Spain
| | - Anuska Mosquera-Corral
- Universidade de Santiago de Compostela. Escuela de Ingeniería. Dpto. de Ingeniería Química, Spain
| | - Belén Juárez-Jiménez
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| | - Jesús González-López
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| | - Belén Rodelas
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| |
Collapse
|
3
|
Kepec M, Matoničkin Kepčija R, Vlaičević B, Kepec S, Gulin V. The applicability of the Sludge Biotic Index in a facility treating sugar refinery effluents and municipal wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1087-1096. [PMID: 33345390 DOI: 10.1002/wer.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Protozoans are valuable indicators of the wastewater biological treatment process and are used in a variety of water resource recovery facilities (WRRF). The aim of this study was to determine the applicability of the Sludge Biotic Index (SBI) as an indicator of activated sludge purification efficiency during different influent loadings: municipal wastewater (M) and municipal wastewater combined with industrial wastewater from a sugar refinery (M + S). Despite the higher organic load during the M + S period, purification efficiency was higher for BOD5 , compared with the M period. SBI values were high during both periods, indicating stable sludge, excellent biological activity, and good to very good performance. According to the share of indicator taxa, better conditions of activated sludge were found during the M + S period. Protozoan abundance differed between the two study periods, as well as purification efficiency for some parameters. Certain taxa showed a significant correlation with purification efficiency for specific parameters. Although SBI is a useful tool for estimating activated sludge health, it should be used in combination with additional indicator metrics and/or a species-specific approach. PRACTITIONER POINTS: Activated sludge can have high purification efficiency during the co-treatment of industrial and municipal wastewater. The Sludge Biotic Index is applicable as an indicator of activated sludge condition during the treatment of municipal and sugar refinery wastewaters. A combination of indicators and a species-specific approach can give better estimation of the health of activated sludge.
Collapse
Affiliation(s)
| | - Renata Matoničkin Kepčija
- Department of Zoology, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Barbara Vlaičević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Slavko Kepec
- VIRKOM d.o.o. and Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Virovitica, Croatia
| | - Vesna Gulin
- Department of Zoology, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
de Celis M, Belda I, Ortiz-Álvarez R, Arregui L, Marquina D, Serrano S, Santos A. Tuning up microbiome analysis to monitor WWTPs' biological reactors functioning. Sci Rep 2020; 10:4079. [PMID: 32139809 PMCID: PMC7057949 DOI: 10.1038/s41598-020-61092-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are necessary to protect ecosystems quality and human health. Their function relies on the degradation of organic matter and nutrients from a water influent, prior to the effluent release into the environment. In this work we studied the bacterial community dynamics of a municipal WWTP with a membrane bioreactor through 16S rRNA gene sequencing. The main phyla identified in the wastewater were Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Actinobacteria. The WWTP is located in Spain and, like other studied WWTP in temperate climate zones, the temperature played a major role in community assembly. Seasonal community succession is observed along the two years sampling period, in addition to a continual annual drift in the microbial populations. The core community of the WWTP bioreactor was also studied, where a small fraction of sequence variants constituted a large fraction of the total abundance. This core microbiome stability along the sampling period and the likewise dissimilarity patterns along the temperature gradient makes this feature a good candidate for a new process control in WWTPs.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ignacio Belda
- Department of Biology, Geology, Physics and Inorganic Chemistry - Area of Biodiversity and Conservation, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Rüdiger Ortiz-Álvarez
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB - CSIC), 17300, Blanes, Catalonia, Spain
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Comparison of the Results from Microscopic Tests Concerning the Quality of Activated Sludge and Effluent. WATER 2017. [DOI: 10.3390/w9120918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Abstract
A thermophilic aerobic membrane reactor (TAMR) treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR) and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C) with high MLSS concentrations (up to 200 gTS L−1). The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.
Collapse
|
7
|
Pedrazzani R, Menoni L, Nembrini S, Manili L, Bertanza G. Suitability of Sludge Biotic Index (SBI), Sludge Index (SI) and filamentous bacteria analysis for assessing activated sludge process performance: the case of piggery slaughterhouse wastewater. ACTA ACUST UNITED AC 2016; 43:953-64. [DOI: 10.1007/s10295-016-1767-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/26/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Piggery slaughterhouse wastewater poses serious issues in terms of disposal feasibility and environmental impact, due to its huge organic load and variability. It is commonly treated by means of activated sludge processes, whose performance, in case of municipal wastewater, can be monitored by means of specific analyses, such as Sludge Biotic Index (SBI), Sludge Index (SI) and floc and filamentous bacteria observation. Therefore, this paper was aimed at assessing the applicability of these techniques to piggery slaughterhouse sewage. A plant located in Northern Italy was monitored for 1 year. Physical, chemical and operation parameters were measured; the activated sludge community (ciliates, flagellates, amoebae and small metazoa) was analysed for calculating SBI and SI. Floc and filamentous bacteria were examined and described accordingly with internationally adopted criteria. The results showed the full applicability of the studied techniques for optimizing the operation of a piggery slaughterhouse wastewater treatment plant.
Collapse
Affiliation(s)
- Roberta Pedrazzani
- grid.7637.5 0000000417571846 Department of Mechanical and Industrial Engineering (DIMI) Universita degli Studi di Brescia via Branze 38 25123 Brescia Italy
| | - Laura Menoni
- grid.7637.5 0000000417571846 Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM) Universita degli Studi di Brescia via Branze 43 25123 Brescia Italy
| | - Stefano Nembrini
- grid.7637.5 0000000417571846 Department of Economics and Management (DEM) Universita degli Studi di Brescia via S. Faustino 74/B 25122 Brescia Italy
| | - Livia Manili
- grid.7637.5 0000000417571846 Department of Mechanical and Industrial Engineering (DIMI) Universita degli Studi di Brescia via Branze 38 25123 Brescia Italy
| | - Giorgio Bertanza
- grid.7637.5 0000000417571846 Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM) Universita degli Studi di Brescia via Branze 43 25123 Brescia Italy
| |
Collapse
|