1
|
Zhang C, Gao W, Song Z, Dong M, Lin H, Zhu G, Lian M, Xiao Y, Lu F, Wang F, Liu Y. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2678-2688. [PMID: 38273455 DOI: 10.1021/acs.jafc.3c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using β-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a β-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Chenchen Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjing Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huixin Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Rational engineering of a metalloprotease to enhance thermostability and activity. Enzyme Microb Technol 2023; 162:110123. [DOI: 10.1016/j.enzmictec.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
|
3
|
Wagschal K, Chan VJ, Pereira JH, Zwart PH, Sankaran B. Chromohalobacter salixigens Uronate Dehydrogenase: Directed Evolution for Improved Thermal Stability and Mutant CsUDH-inc X-ray Crystal Structure. Process Biochem 2022; 114:185-192. [PMID: 35462854 PMCID: PMC9031460 DOI: 10.1016/j.procbio.2020.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chromohalobacter salixigens contains a uronate dehydrogenase termed CsUDH that can convert uronic acids to their corresponding C1,C6-dicarboxy aldaric acids, an important enzyme reaction applicable for biotechnological use of sugar acids. To increase the thermal stability of this enzyme for biotechnological processes, directed evolution using gene family shuffling was applied, and the hits selected from 2-tier screening of a shuffled gene family library contained in total 16 mutations, only some of which when examined individually appreciably increased thermal stability. Most mutations, while having minimal or no effect on thermal stability when tested in isolation, were found to exhibit synergy when combined; CsUDH-inc containing all 16 mutations had ΔK t 0.5 +18 °C, such that k cat was unaffected by incubation for 1 hr at ~70 °C. X-ray crystal structure of CsUDH-inc showed tight packing of the mutated residue side-chains, and comparison of rescaled B-values showed no obvious differences between wild type and mutant structures. Activity of CsUDH-inc was severely depressed on glucuronic and galacturonic acids. Combining select combinations of only three mutations resulted in good or comparable activity on these uronic acids, while maintaining some improved thermostability with ΔK t 0.5 ~+ 10 °C, indicating potential to further thermally optimize CsUDH for hyperthermophilic reaction environments.
Collapse
Affiliation(s)
- Kurt Wagschal
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA,Corresponding Authors: ,
| | - Victor J. Chan
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | - Jose H. Pereira
- Molecular Biophysics and Integrated Bioimaging, Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Peter H. Zwart
- Molecular Biophysics and Integrated Bioimaging & Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratories,1 Cyclotron Road, Berkeley, CA, 94703, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA,Corresponding Authors: ,
| |
Collapse
|
4
|
Improvements in xylose stability and thermalstability of GH39 β-xylosidase from Dictyoglomus thermophilum by site-directed mutagenesis and insights into its xylose tolerance mechanism. Enzyme Microb Technol 2021; 151:109921. [PMID: 34649692 DOI: 10.1016/j.enzmictec.2021.109921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
β-Xylosidases are often inhibited by its reaction product xylose or inactivated by high temperature environment, which limited its application in hemicellulosic biomass conversion to fuel and food processing. Remarkably, some β-xylosidases from GH39 family are tolerant to xylose. Therefore, it is of great significance to elucidate the effect mechanism of xylose on GH39 β-xylosidases to improve their application. In this paper, based on the homologous model and prediction of protein active pocket constructed by I-TASSA and PyMOL, two putative xylose tolerance relevant sites (283 and 284) were mutated at the bottom of the protein active pocket, where xylose sensitivity and thermostability of Dictyoglomus thermophilum β-xylosidase Xln-DT were improved by site-directed mutagenesis. The Xln-DT mutant Xln-DT-284ASP and Xln-DT-284ALA showed high xylose tolerance, with the Ki values of 4602 mM and 3708 mM, respectively, which increased by 9-35% compared with the wildtype Xln-DT. The thermostability of mutant Xln-DT-284ASP was significantly improved at 75 and 85 °C, while the activity of the wild enzyme Xln-DT decreased to 40-20%, the activity of the mutant enzyme still remained 100%. The mutant Xln-DT-284ALA showed excellent stability at pH 4.0-7.0, but Xln-DT-284ASP showed slightly decreased activity. Furthermore, in order to explore the key sites and mechanism of xylose's effect on β-xylosidase activity, the interaction between xylose and enzyme was simulated by molecular docking. Besides binding to the active sites at the bottom of the substrate channel, xylose can also bind to sites in the middle or entrance of the channel with different affinities, which may determine the xylose inhibition of β-xylosidase. In conclusion, the improved xylose tolerance of mutant enzyme could be more advantageous in the degradation of hemicellulose and the biotransformation of other natural active substances containing xylose. This study supplies new insights into general mechanism of xylose effect on the activity of GH 39 β-xylosidases as well as related enzymes that modulate their activity via feedback control mechanism.
Collapse
|
5
|
EcXyl43 β-xylosidase: molecular modeling, activity on natural and artificial substrates, and synergism with endoxylanases for lignocellulose deconstruction. Appl Microbiol Biotechnol 2018; 102:6959-6971. [PMID: 29876606 DOI: 10.1007/s00253-018-9138-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 β-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose. In this work, the structural and functional properties of β-xylosidase EcXyl43 from Enterobacter sp. were thoroughly characterized. Molecular modeling suggested a 3D structure formed by a conserved N-terminal catalytic domain linked to an ancillary C-terminal domain. Both domains resulted essential for enzymatic activity, and the role of critical residues, from the catalytic and the ancillary modules, was confirmed by mutagenesis. EcXyl43 presented β-xylosidase activity towards natural and artificial substrates while arabinofuranosidase activity was only detected on nitrophenyl α-L-arabinofuranoside (pNPA). It hydrolyzed xylobiose and purified xylooligosaccharides (XOS), up to degree of polymerization 6, with higher activity towards longer XOS. Low levels of activity on commercial xylan were also observed, mainly on the soluble fraction. The addition of EcXyl43 to GH10 and GH11 endoxylanases increased the release of xylose from xylan and pre-treated wheat straw. Additionally, EcXyl43 exhibited high efficiency and thermal stability under its optimal conditions (40 °C, pH 6.5), with a half-life of 58 h. Therefore, this enzyme could be a suitable additive for hemicellulases in long-term hydrolysis reactions. Because of its moderate inhibition by monomeric sugars but its high inhibition by ethanol, EcXyl43 could be particularly more useful in separate hydrolysis and fermentation (SHF) than in simultaneous saccharification and co-fermentation (SSCF) or consolidated bioprocessing (CBP).
Collapse
|
6
|
Xu T, Huang X, Li Z, Ki Lin CS, Li S. Enhanced Purification Efficiency and Thermal Tolerance of Thermoanaerobacterium aotearoense β-Xylosidase through Aggregation Triggered by Short Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4182-4188. [PMID: 29633613 DOI: 10.1021/acs.jafc.8b00551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To simplify purification and improve heat tolerance of a thermostable β-xylosidase (ThXylC), a short ELK16 peptide was attached to its C-terminus, which is designated as ThXylC-ELK. Wild-type ThXylC was normally expressed in soluble form. However, ThXylC-ELK assembled into aggregates with 98.6% of total β-xylosidase activity. After simple centrifugation and buffer washing, the ThXylC-ELK particles were collected with 92.57% activity recovery and 95% purity, respectively. Meanwhile, the wild-type ThXylC recovery yield was less than 55% after heat inactivation, affinity and desalting chromatography followed by HRV 3C protease cleavage purification. Catalytic efficiency ( Kcat/ Km) was increased from 21.31 mM-1 s-1 for ThXylC to 32.19 mM-1 s-1 for ThXylC-ELK accompanied by a small increase in Km value. Heat tolerance of ThXylC-ELK at high temperatures was also increased. The ELK16 peptide attachment resulted in 6.2-fold increase of half-life at 65 °C. Released reducing sugars were raised 1.3-fold during sugar cane bagasse hydrolysis when ThXylC-ELK was supplemented into the combination of XynAΔSLH and Cellic CTec2.
Collapse
Affiliation(s)
- Tianwang Xu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Xiongliang Huang
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Zhe Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Carol Sze Ki Lin
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shuang Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| |
Collapse
|
7
|
Galanopoulou AP, Moraïs S, Georgoulis A, Morag E, Bayer EA, Hatzinikolaou DG. Insights into the functionality and stability of designer cellulosomes at elevated temperatures. Appl Microbiol Biotechnol 2016; 100:8731-43. [PMID: 27207145 DOI: 10.1007/s00253-016-7594-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/23/2016] [Accepted: 04/28/2016] [Indexed: 01/21/2023]
Abstract
Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum. The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.
Collapse
Affiliation(s)
- Anastasia P Galanopoulou
- Faculty of Biology, Microbiology Group, National and Kapodistrian University of Athens, Zografou Campus, 15784, Zografou, Attica, Greece
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Anastasios Georgoulis
- Faculty of Biology, Microbiology Group, National and Kapodistrian University of Athens, Zografou Campus, 15784, Zografou, Attica, Greece
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Dimitris G Hatzinikolaou
- Faculty of Biology, Microbiology Group, National and Kapodistrian University of Athens, Zografou Campus, 15784, Zografou, Attica, Greece.
| |
Collapse
|
8
|
Development of Therapeutic Chimeric Uricase by Exon Replacement/Restoration and Site-Directed Mutagenesis. Int J Mol Sci 2016; 17:ijms17050764. [PMID: 27213357 PMCID: PMC4881585 DOI: 10.3390/ijms17050764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 01/18/2023] Open
Abstract
The activity of urate oxidase was lost during hominoid evolution, resulting in high susceptibility to hyperuricemia and gout in humans. In order to develop a more “human-like” uricase for therapeutic use, exon replacement/restoration and site-directed mutagenesis were performed to obtain porcine–human uricase with higher homology to deduced human uricase (dHU) and increased uricolytic activity. In an exon replacement study, substitution of exon 6 in wild porcine uricase (wPU) gene with corresponding exon in dhu totally abolished its activity. Substitutions of exon 5, 3, and 1–2 led to 85%, 60%, and 45% loss of activity, respectively. However, replacement of exon 4 and 7–8 did not significantly change the enzyme activity. When exon 5, 6, and 3 in dhu were replaced by their counterparts in wpu, the resulting chimera H1-2P3H4P5-6H7-8 was active, but only about 28% of wPU. Multiple sequence alignment and homology modeling predicted that mutations of E24D and E83G in H1-2P3H4P5-6H7-8 were favorable for further increase of its activity. After site-directed mutagenesis, H1-2P3H4P5-6H7-8 (E24D & E83G) with increased homology (91.45%) with dHU and higher activity and catalytic efficiency than the FDA-approved porcine–baboon chimera (PBC) was obtained. It showed optimum activity at pH 8.5 and 35 °C and was stable in a pH range of 6.5–11.0 and temperature range of 20–40 °C.
Collapse
|
9
|
Rational Substitution of Surface Acidic Residues for Enhancing the Thermostability of Thermolysin. Appl Biochem Biotechnol 2015; 178:725-38. [DOI: 10.1007/s12010-015-1905-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022]
|
10
|
Chen J, Jiang N, Wang T, Xie G, Zhang Z, Li H, Yuan J, Sun Z, Chen J. DNA shuffling of uricase gene leads to a more "human like" chimeric uricase with increased uricolytic activity. Int J Biol Macromol 2015; 82:522-9. [PMID: 26526169 DOI: 10.1016/j.ijbiomac.2015.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Urate oxidase (Uox) is the enzyme involved in purine metabolism. Pseudogenization of Uox gene is the underlying mechanism of hyperuricemia and gout in human. Although Uox from various microorganisms has been used in clinical practice for many years, its application is limited by potential immunogenicity. In order to develop a more "human like" uricase, DNA shuffling was used to create chimeric uricase with both improved enzymatic activity and increased homology with deduced human uricase (dHU) gene. By using wild porcine uricase (wPU) gene and dhu as parental genes, a diverse chimeric library was generated. After preliminary screening by a "homebrew" high throughput protocol, approximately 100 chimeras with relatively high enzymatic activity were obtained. By further activity comparison of the purified enzymes, chimera-62 with increase in both activity and homology with dHU compared with wPU was selected. Its Km and catalytic efficiency were determined as 9.43±0.04μM and 2.67s(-1)μM(-1) respectively. There were 33 amino acid substitutions in chimera-62 when compared with dHU and 5 substitutions when compared with wPU. By homology modeling and 3-D structure analysis, it was speculated that mutations G248S and L266F contributed to the increased activity of chimera-62 by increasing the stability of α-helix and surface polarity respectively.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Department of Neurosurgery, Shanghai 5th People's Hospital, Shanghai Medical College, Fudan University, Shanghai 200240, China
| | - Guangrong Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhilai Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Yuan
- School of life science, Faculty of Health and Life science, University of Liverpool, Liverpool, L69 3BX, UK
| | - Zengxian Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222002, China.
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Bhalla A, Bischoff KM, Sani RK. Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 2014; 14:963. [PMID: 25532585 PMCID: PMC4300165 DOI: 10.1186/s12896-014-0106-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/01/2014] [Indexed: 11/10/2022] Open
Abstract
Background Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and β-xylosidase. β-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable β-xylosidases have been a focus of attention as industrially important enzymes due to their long shelf life and role in the relief of end-product inhibition of xylanases caused by xylo-oligosaccharides. Therefore, a highly thermostable β-xylosidase with high specific activity has significant potential in lignocellulose bioconversion. Results A gene encoding a highly thermostable GH39 β-xylosidase was cloned from Geobacillus sp. strain WSUCF1 and expressed in Escherichia coli. Recombinant β-xylosidase was active over a wide range of temperatures and pH with optimum temperature of 70°C and pH 6.5. It exhibited very high thermostability, retaining 50% activity at 70°C after 9 days. WSUCF1 β-xylosidase is more thermostable than β-xylosidases reported from other thermophiles (growth temperature ≤ 70°C). Specific activity was 133 U/mg when incubated with p-nitrophenyl xylopyranoside, with Km and Vmax values of 2.38 mM and 147 U/mg, respectively. SDS-PAGE analysis indicated that the recombinant enzyme had a mass of 58 kDa, but omitting heating prior to electrophoresis increased the apparent mass to 230 kDa, suggesting the enzyme exists as a tetramer. Enzyme exhibited high tolerance to xylose, retained approximately 70% of relative activity at 210 mM xylose concentration. Thin layer chromatography showed that the enzyme had potential to convert xylo-oligomers (xylobiose, triose, tetraose, and pentaose) into fermentable xylose. WSUCF1 β-xylosidase along with WSUCF1 endo-xylanase synergistically converted the xylan into fermentable xylose with more than 90% conversion. Conclusions Properties of the WSUCF1 β-xylosidase i.e. high tolerance to elevated temperatures, high specific activity, conversion of xylo-oligomers to xylose, and resistance to inhibition from xylose, make this enzyme potentially suitable for various biotechnological applications.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,Present address: Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kenneth M Bischoff
- Renewable Product Technology Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, IL, 61604, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|