1
|
Reddy JV, Raudenbush K, Papoutsakis ET, Ierapetritou M. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation. Biotechnol Adv 2023; 67:108179. [PMID: 37257729 DOI: 10.1016/j.biotechadv.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
In order to meet the rising demand for biologics and become competitive on the developing biosimilar market, there is a need for process intensification of biomanufacturing processes. Process development of biologics has historically relied on extensive experimentation to develop and optimize biopharmaceutical manufacturing. Experimentation to optimize media formulations, feeding schedules, bioreactor operations and bioreactor scale up is expensive, labor intensive and time consuming. Mathematical modeling frameworks have the potential to enable process intensification while reducing the experimental burden. This review focuses on mathematical modeling of cellular metabolism and N-linked glycosylation as applied to upstream manufacturing of biologics. We review developments in the field of modeling cellular metabolism of mammalian cells using kinetic and stoichiometric modeling frameworks along with their applications to simulate, optimize and improve mechanistic understanding of the process. Interest in modeling N-linked glycosylation has led to the creation of various types of parametric and non-parametric models. Most published studies on mammalian cell metabolism have performed experiments in shake flasks where the pH and dissolved oxygen cannot be controlled. Efforts to understand and model the effect of bioreactor-specific parameters such as pH, dissolved oxygen, temperature, and bioreactor heterogeneity are critically reviewed. Most modeling efforts have focused on the Chinese Hamster Ovary (CHO) cells, which are most commonly used to produce monoclonal antibodies (mAbs). However, these modeling approaches can be generalized and applied to any mammalian cell-based manufacturing platform. Current and potential future applications of these models for Vero cell-based vaccine manufacturing, CAR-T cell therapies, and viral vector manufacturing are also discussed. We offer specific recommendations for improving the applicability of these models to industrially relevant processes.
Collapse
Affiliation(s)
- Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Katherine Raudenbush
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA; Delaware Biotechnology Institute, Department of Biological Sciences, University of Delaware, USA.
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA.
| |
Collapse
|
2
|
Kotidis P, Pappas I, Avraamidou S, Pistikopoulos EN, Kontoravdi C, Papathanasiou MM. DigiGlyc: A hybrid tool for reactive scheduling in cell culture systems. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Lederle M, Tric M, Roth T, Schütte L, Rattenholl A, Lütkemeyer D, Wölfl S, Werner T, Wiedemann P. Continuous optical in-line glucose monitoring and control in CHO cultures contributes to enhanced metabolic efficiency while maintaining darbepoetin alfa product quality. Biotechnol J 2021; 16:e2100088. [PMID: 34008350 DOI: 10.1002/biot.202100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023]
Abstract
Great efforts are directed towards improving productivity, consistency and quality of biopharmaceutical processes and products. One particular area is the development of new sensors for continuous monitoring of critical bioprocess parameters by using online or in-line monitoring systems. Recently, we developed a glucose biosensor applicable in single-use, in-line and long-term glucose monitoring in mammalian cell bioreactors. Now, we integrated this sensor in an automated glucose monitoring and feeding system capable of maintaining stable glucose levels, even at very low concentrations. We compared this fed-batch feedback system at both low (< 1 mM) and high (40 mM) glucose levels with traditional batch culture methods, focusing on glycosylation and glycation of the recombinant protein darbepoetin alfa (DPO) produced by a CHO cell line. We evaluated cell growth, metabolite and product concentration under different glucose feeding strategies and show that continuous feeding, even at low glucose levels, has no harmful effects on DPO quantity and quality. We conclude that our system is capable of tight glucose level control throughout extended bioprocesses and has the potential to improve performance where constant maintenance of glucose levels is critical.
Collapse
Affiliation(s)
- Mario Lederle
- Department of Biotechnology, Institute of Analytical Chemistry, Mannheim University of Applied Sciences, Mannheim, Germany.,Pharmaceutical Biology, Bioanalytics and Molecular Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Mircea Tric
- Department of Biotechnology, Institute of Analytical Chemistry, Mannheim University of Applied Sciences, Mannheim, Germany.,Pharmaceutical Biology, Bioanalytics and Molecular Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Tatjana Roth
- Department of Biotechnology, Institute of Analytical Chemistry, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Lina Schütte
- Center for Applied Chemistry, Institute of Food Chemistry, Gottfried Wilhelm Leibniz University, Hannover, Germany
| | - Anke Rattenholl
- Faculty of Engineering and Mathematics, Institute of Biotechnological Process Engineering, Bielefeld University of Applied Sciences, Bielefeld, Germany
| | - Dirk Lütkemeyer
- Faculty of Engineering and Mathematics, Institute of Biotechnological Process Engineering, Bielefeld University of Applied Sciences, Bielefeld, Germany
| | - Stefan Wölfl
- Pharmaceutical Biology, Bioanalytics and Molecular Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Tobias Werner
- Department of Biotechnology, Institute of Analytical Chemistry, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Philipp Wiedemann
- Department of Biotechnology, Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
4
|
Fung Shek C, Kotidis P, Betenbaugh M. Mechanistic and data-driven modeling of protein glycosylation. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
mAb Production Modeling and Design Space Evaluation Including Glycosylation Process. Processes (Basel) 2021. [DOI: 10.3390/pr9020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Due to high demand, monoclonal antibodies (mAbs) production needs to be efficient, as well as maintaining a high product quality. Quality by design (QbD) via predictive process modeling greatly facilitates process understanding and can be used to adjust process parameters to further improve the unit operations. In this work, mechanistic and dynamic kriging models are developed to capture the protein productivity and glycan fractions under different temperatures and pH levels. The design of experiments is used to generate input and output data for model training. The dynamic kriging model shows good performance in capturing the dynamic profiles of cell cultures and glycosylation using only limited input data. The developed model is further used for feasibility analysis, and successfully identifies the operating design space, maintaining high productivity and guaranteed product quality.
Collapse
|
6
|
Donald LJ, Spearman M, Mishra N, Komatsu E, Butler M, Perreault H. Mass spectrometric analysis of core fucosylation and sequence variation in a human-camelid monoclonal antibody. Mol Omics 2020; 16:221-230. [PMID: 32163054 DOI: 10.1039/c9mo00168a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospray mass spectrometry (ESI-MS) was used to measure the masses of an intact dimeric monoclonal antibody (Mab) and assess the fucosylation level. The Mab under study was EG2-hFc, a chimeric human-camelid antibody of about 80 kDa (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90). It was obtained from cell culture with and without a fucosylation inhibitor, and treated with EndoS which cleaves between the two core N-acetyl glucosamine (GlcNAc) residues. It is the first time that this combined approach with a unique mass spectrometer was used to measure 146 Da differences as part of a large intact dimeric antibody. Results showed that in the dimer, both heavy chains were fucosylated on the core GlcNAc of the Fc Asn site equivalent to Asn297. In the presence of the fucosylation inhibitor, fucosylation was lost on both subunits. Following reduction, monomers were analyzed and the masses obtained corroborated the dimer results. Dimeric EG2-hFc Mab treated with PNGase F, to deglycosylate the protein, was also measured by MS for mass comparison. In spite of the success of fucosylation level measurements, the experimental masses of deglycosylated dimers and GlcNAc-Fuc bearing dimers did not correspond to masses of our sequence of reference (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90; ; ), which prompted experiments to determine the protein backbone sequence. Digest mixtures from trypsin, GluC, as well as trypsin + GluC proteolysis were analyzed by matrix-assisted laser desorption/ionization (MALDI) MS and MS/MS. A few variations were found relative to the reference sequence, which are discussed in detail herein. These measurements allowed us to build a new "experimental" sequence for the EG2-hFc samples investigated in this work, although there are still ambiguities to be resolved in this new sequence. MALDI-MS/MS also confirmed the fucosylation pattern in the Fc tryptic peptide EEQYNSTYR.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
7
|
McHugh KP, Xu J, Aron KL, Borys MC, Li ZJ. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol Prog 2020; 36:e2959. [DOI: 10.1002/btpr.2959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Kyle P. McHugh
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Jianlin Xu
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Kathryn L. Aron
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Michael C. Borys
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Zheng Jian Li
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| |
Collapse
|
8
|
Xu J, Tang P, Yongky A, Drew B, Borys MC, Liu S, Li ZJ. Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. MAbs 2019; 11:191-204. [PMID: 30230966 PMCID: PMC6343780 DOI: 10.1080/19420862.2018.1525262] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
Temperature shift (TS) to a hypothermic condition has been widely used during protein production processes that use Chinese hamster ovary (CHO) cells. The effect of temperature on cell growth, metabolites, protein titer and quality depends on cell line, product, and other bioreactor conditions. Due to the large numbers of experiments, which typically last 2-3 weeks each, limited systematic TS studies have been reported with multiple shift temperatures and steps at different times. Here, we systematically studied the effect of temperature on cell culture performance for the production of two monoclonal antibodies by industrial GS and DG44 CHO cell lines. Three 2-8 day short-duration methods were developed and validated for researching the effect of many different temperatures on CHO cell culture and quality attributes. We found that minor temperature differences (1-1.5 °C) affected cell culture performance. The kinetic parameters extracted from the short duration data were subsequently used to compute and predict cell culture performance in extended duration of 10-14 days with multiple TS conditions for both CHO cell lines. These short-duration culture methods with kinetic modeling tools may be used for effective TS optimization to achieve the best profiles for cell growth, metabolites, titer and quality attributes. Although only three short-duration methods were developed with two CHO cell lines, similar short-duration methods with kinetic modeling may be applied for different hosts, including both microbial and other mammalian cells.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Peifeng Tang
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| | - Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Barry Drew
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Michael C. Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| |
Collapse
|
9
|
Kontoravdi C, Jimenez del Val I. Computational tools for predicting and controlling the glycosylation of biopharmaceuticals. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Xu J, Rehmann MS, Xu X, Huang C, Tian J, Qian NX, Li ZJ. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media. MAbs 2018; 10:488-499. [PMID: 29388872 DOI: 10.1080/19420862.2018.1433978] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.
Collapse
Affiliation(s)
- Jianlin Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Matthew S Rehmann
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Xuankuo Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Chao Huang
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Jun Tian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Nan-Xin Qian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Zheng Jian Li
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| |
Collapse
|