1
|
Flow cytometry: a tool for understanding the behaviour of polyhydroxyalkanoate accumulators. Appl Microbiol Biotechnol 2023; 107:581-590. [PMID: 36525042 DOI: 10.1007/s00253-022-12318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The use of mixed microbial cultures (MMCs) is seen as an attractive strategy for polyhydroxyalkanoate (PHA) production. In order to optimize the MMC-PHA production process, tools are required to improve our understanding of the physiological state of the PHA-storing microorganisms within the MMC. In the present study, we explored the use of flow cytometry to analyse the metabolic state and polyhydroxybutyrate (PHB) content of the microorganisms from an MMC-PHA production process. A sequencing batch reactor under a feast and famine regime was used to enrich an MMC with PHB-storing microorganisms. Interestingly, once the PHB-storing microorganisms are selected, the level of PHB accumulation depends largely on the metabolic state of these microorganisms and not exclusively on the consortium composition. These results demonstrate that flow cytometry is a powerful tool to help to understand the PHA storage response of an MMC-PHA production process. KEY POINTS: • Flow cytometry allows to measure PHB content and metabolic activity over time. • Microorganisms showing high PHB content also have high metabolic activity. • PHB producers with low metabolic activity show low PHB content.
Collapse
|
2
|
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria. SUSTAINABILITY 2022. [DOI: 10.3390/su14148241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics.
Collapse
|
3
|
Frison N, Andreolli M, Botturi A, Lampis S, Fatone F. Effects of the Sludge Retention Time and Carbon Source on Polyhydroxyalkanoate-Storing Biomass Selection under Aerobic-Feast and Anoxic-Famine Conditions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:9455-9464. [PMID: 35059238 PMCID: PMC8764655 DOI: 10.1021/acssuschemeng.1c02973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Indexed: 06/02/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are versatile biodegradable polymers produced by bacteria and are suitable for many downstream applications. They can be produced inexpensively from mixed microbial cultures under feast and famine conditions in the presence of biobased volatile fatty acids (VFAs). Here, we investigated the effect of changing the sludge retention time (SRT) and the addition of fermented cellulosic primary sludge (CPS) as a carbon source on the selection of PHA-storing biomass when applying the feast and famine strategy under aerobic and anoxic conditions, respectively. Increasing the SRT from 5 to 7-10 days enhanced PHA yields under feast conditions from 0.18 gCODPHA/gCODVFA (period 1) to 0.40 gCODPHA/gCODVFA (period 2). The use of fermented CPS as a carbon source (period 3) increased PHA yields to 0.62 gCODPHA/gCODVFA despite the presence of biodegradable non-VFA fractions. Microbial characterization by denaturing gradient gel electrophoresis and fluorescence in situ hybridization revealed high microbial speciation during the three experimental periods. In period 3, the dominant genera were Thauera, Paracoccus, and Azoarcus, which accounted for ∼95% of the total microbial biomass.
Collapse
Affiliation(s)
- Nicola Frison
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Marco Andreolli
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alice Botturi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Lampis
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesco Fatone
- Department
of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, via Brecce Bianche 12, 60131 Ancona, Italy
| |
Collapse
|
4
|
Pinto-Ibieta F, Cea M, Cabrera F, Abanto M, Felissia FE, Area MC, Ciudad G. Strategy for biological co-production of levulinic acid and polyhydroxyalkanoates by using mixed microbial cultures fed with synthetic hemicellulose hydrolysate. BIORESOURCE TECHNOLOGY 2020; 309:123323. [PMID: 32299048 DOI: 10.1016/j.biortech.2020.123323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Hemicellulose hydrolysates (HH), which could be an interesting carbon source to feed mixed microbial cultures (MMC) able to accumulate high value-added compounds. This research focused on the evaluation of a culture strategy to achieve the simultaneous biological production of Levulinic Acid (LA) and Polyhydroxyalcanoates (PHA) by MMC fed with a synthetic HH (SHH). The culture strategy involves the use of sequential batch reactors (SBR) to select microorganisms capable of producing LA and PHA. This work proved that the cultivation strategy used allowed the biological production of LA, reaching 37%w/w when the SHH was composed of 85% pentoses. In addition, the simultaneous biological production of LA and PHB was possible when the SHH was enriched with acetate (45% pentoses - 50% acetate). Finally, this study showed that the composition of the SHH impacts directly on the selected microorganism genus and the type and quantity of the value-added compounds obtained.
Collapse
Affiliation(s)
- F Pinto-Ibieta
- Doctorate of Engineering Sciences with Specialization in Bioprocess, Universidad de La Frontera, Av. Francisco Salazar #01145, Temuco, Chile; Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | - M Cea
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F Cabrera
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Temuco, Chile
| | - M Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F E Felissia
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Misiones, Argentina, Félix de Azara 1552, Posadas, Argentina
| | - M C Area
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Misiones, Argentina, Félix de Azara 1552, Posadas, Argentina
| | - G Ciudad
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile.
| |
Collapse
|