1
|
Zhou Y, Zhou S, Lyons S, Sun H, Sweedler JV, Lu Y. Enhancing 2-Pyrone Synthase Efficiency by High-Throughput Mass-Spectrometric Quantification and In Vitro/In Vivo Catalytic Performance Correlation. Chembiochem 2024; 25:e202300849. [PMID: 38116888 DOI: 10.1002/cbic.202300849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Engineering efficient biocatalysts is essential for metabolic engineering to produce valuable bioproducts from renewable resources. However, due to the complexity of cellular metabolic networks, it is challenging to translate success in vitro into high performance in cells. To meet such a challenge, an accurate and efficient quantification method is necessary to screen a large set of mutants from complex cell culture and a careful correlation between the catalysis parameters in vitro and performance in cells is required. In this study, we employed a mass-spectrometry based high-throughput quantitative method to screen new mutants of 2-pyrone synthase (2PS) for triacetic acid lactone (TAL) biosynthesis through directed evolution in E. coli. From the process, we discovered two mutants with the highest improvement (46 fold) in titer and the fastest kcat (44 fold) over the wild type 2PS, respectively, among those reported in the literature. A careful examination of the correlation between intracellular substrate concentration, Michaelis-Menten parameters and TAL titer for these two mutants reveals that a fast reaction rate under limiting intracellular substrate concentrations is important for in-cell biocatalysis. Such properties can be tuned by protein engineering and synthetic biology to adopt these engineered proteins for the maximum activities in different intracellular environments.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| | - Shuaizhen Zhou
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| | - Scott Lyons
- Department of Molecular Bioscience, The University of Texas at Austin, 100 E 24th St, Austin, TX 78712, USA
| | - Haoran Sun
- Department of Molecular Bioscience, The University of Texas at Austin, 100 E 24th St, Austin, TX 78712, USA
| | - Jonathan V Sweedler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Liu H, Huang X, Liu Y, Jing X, Ning Y, Xu P, Deng L, Wang F. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18909-18918. [PMID: 37999448 DOI: 10.1021/acs.jafc.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Lignocellulose is a promising renewable feedstock for the bioproduction of high-value biochemicals. The poorly expressed xylose catabolic pathway was the bottleneck in the efficient utilization of the lignocellulose feedstock in yeast. Herein, multiple genetic and process engineering strategies were explored to debottleneck the conversion of xylose to the platform chemical triacetic acid lactone (TAL) in Yarrowia lipolytica. We identified that xylose assimilation generating more cofactor NADPH was favorable for the TAL synthesis. pH control improved the expression of acetyl-CoA carboxylase and generated more precursor malonyl-CoA. Combined with the suppression of the lipid synthesis pathway, 5.03 and 4.18 g/L TAL were produced from pure xylose and xylose-rich wheat straw hydrolysate, respectively. Our work removed the bottleneck of the xylose assimilation pathway and effectively upgraded wheat straw hydrolysate to TAL, which enabled us to build a sustainable oleaginous yeast cell factory to cost-efficiently produce green chemicals from low-cost lignocellulose by Y. lipolytica.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolan Huang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangming Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyun Jing
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchen Ning
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
4
|
Lin P, Fu Z, Liu X, Liu C, Bai Z, Yang Y, Li Y. Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1599-1607. [PMID: 37172280 DOI: 10.1021/acssynbio.2c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyketides are a class of natural products with many applications but are mainly appealing as pharmaceuticals. Heterologous production of polyketides in the yeast Saccharomyces cerevisiae has been widely explored because of the many merits of this model eukaryotic microorganism. Although acetyl-CoA and malonyl-CoA, the precursors for polyketide synthesis, are distributed in several yeast subcellular organelles, only cytosolic synthesis of polyketides has been pursued in previous studies. In this study, we investigate polyketide synthesis by directly using acetyl-CoA in the peroxisomes of yeast strain CEN.PK2-1D. We first demonstrate that the polyketide flaviolin can be synthesized in this organelle upon peroxisomal colocalization of native acetyl-CoA carboxylase and 1,3,6,8-tetrahydroxynaphthalene synthase (a type III polyketide synthase). Next, using the synthesis of the polyketide triacetic acid lactone as an example, we show that (1) a new peroxisome targeting sequence, pPTS1, is more effective than the previously reported ePTS1 for peroxisomal polyketide synthesis; (2) engineering peroxisome proliferation is effective to boost polyketide production; and (3) peroxisomes provide an additional acetyl-CoA reservoir and extra space to accommodate enzymes so that utilizing the peroxisomal pathway plus the cytosolic pathway produces more polyketide than the cytosolic pathway alone. This research lays the groundwork for more efficient heterologous polyketide biosynthesis using acetyl-CoA pools in subcellular organelles.
Collapse
Affiliation(s)
- Pingxin Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhenhao Fu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| |
Collapse
|
5
|
Otoupal PB, Geiselman GM, Oka AM, Barcelos CA, Choudhary H, Dinh D, Zhong W, Hwang H, Keasling JD, Mukhopadhyay A, Sundstrom E, Haushalter RW, Sun N, Simmons BA, Gladden JM. Advanced one-pot deconstruction and valorization of lignocellulosic biomass into triacetic acid lactone using Rhodosporidium toruloides. Microb Cell Fact 2022; 21:254. [PMID: 36482295 PMCID: PMC9733078 DOI: 10.1186/s12934-022-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.
Collapse
Affiliation(s)
- Peter B. Otoupal
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Gina M. Geiselman
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Asun M. Oka
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Carolina A. Barcelos
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Hemant Choudhary
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Duy Dinh
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Wenqing Zhong
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - HeeJin Hwang
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Jay D. Keasling
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Danish Technical University, Lyngby, Denmark ,grid.458489.c0000 0001 0483 7922Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Aindrila Mukhopadhyay
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Eric Sundstrom
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Robert W. Haushalter
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Blake A. Simmons
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - John M. Gladden
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| |
Collapse
|
6
|
Cao M, Tran VG, Qin J, Olson A, Mishra S, Schultz JC, Huang C, Xie D, Zhao H. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng 2022; 119:2529-2540. [PMID: 35701887 PMCID: PMC9540541 DOI: 10.1002/bit.28159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 12/19/2022]
Abstract
The plant‐sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here, we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2‐pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl‐CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of ATP‐citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl‐CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12‐ACL1‐ACC1 using fed‐batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for the production of TAL and other acetyl‐CoA‐derived polyketides from low‐cost carbon sources.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John C Schultz
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chunshuai Huang
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Calzini MA, Malico AA, Mitchler MM, Williams GJ. Protein engineering for natural product biosynthesis and synthetic biology applications. Protein Eng Des Sel 2021; 34:gzab015. [PMID: 34137436 PMCID: PMC8209613 DOI: 10.1093/protein/gzab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
As protein engineering grows more salient, many strategies have emerged to alter protein structure and function, with the goal of redesigning and optimizing natural product biosynthesis. Computational tools, including machine learning and molecular dynamics simulations, have enabled the rational mutagenesis of key catalytic residues for enhanced or altered biocatalysis. Semi-rational, directed evolution and microenvironment engineering strategies have optimized catalysis for native substrates and increased enzyme promiscuity beyond the scope of traditional rational approaches. These advances are made possible using novel high-throughput screens, including designer protein-based biosensors with engineered ligand specificity. Herein, we detail the most recent of these advances, focusing on polyketides, non-ribosomal peptides and isoprenoids, including their native biosynthetic logic to provide clarity for future applications of these technologies for natural product synthetic biology.
Collapse
Affiliation(s)
- Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Melissa M Mitchler
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
- Comparative Medicine Institute, NC State University Raleigh, Raleigh, NC 27695-8204, USA
| |
Collapse
|
8
|
Sajjad H, Prebihalo EA, Tolman WB, Reineke TM. Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative. Polym Chem 2021. [DOI: 10.1039/d1py00561h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the synthesis and polymerization of a novel disubstituted valerolactone, β-acetoxy-δ-methylvalerolactone, derived from the renewable feedstock triacetic acid lactone (TAL).
Collapse
Affiliation(s)
- Hussnain Sajjad
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | - Emily A. Prebihalo
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | - William B. Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St Louis, MO 63130-4899, USA
| | - Theresa M. Reineke
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
9
|
Kim J, Hoang Nguyen Tran P, Lee SM. Current Challenges and Opportunities in Non-native Chemical Production by Engineered Yeasts. Front Bioeng Biotechnol 2021; 8:594061. [PMID: 33381497 PMCID: PMC7767886 DOI: 10.3389/fbioe.2020.594061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Yeasts are promising industrial hosts for sustainable production of fuels and chemicals. Apart from efficient bioethanol production, yeasts have recently demonstrated their potential for biodiesel production from renewable resources. The fuel-oriented product profiles of yeasts are now expanding to include non-native chemicals with the advances in synthetic biology. In this review, current challenges and opportunities in yeast engineering for sustainable production of non-native chemicals will be discussed, with a focus on the comparative evaluation of a bioethanol-producing Saccharomyces cerevisiae strain and a biodiesel-producing Yarrowia lipolytica strain. Synthetic pathways diverging from the distinctive cellular metabolism of these yeasts guide future directions for product-specific engineering strategies for the sustainable production of non-native chemicals on an industrial scale.
Collapse
Affiliation(s)
- Jiwon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biotechnology, Korea University, Seoul, South Korea
| | - Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea.,Green School, Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Wang Z, Doshi A, Chowdhury R, Wang Y, Maranas CD, Cirino PC. Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid. Protein Eng Des Sel 2020; 33:5993570. [DOI: 10.1093/protein/gzaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
We previously described the design of triacetic acid lactone (TAL) biosensor ‘AraC-TAL1’, based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a ‘decoy’ ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX 77204-4004 Houston, TX, USA
| | - Aarti Doshi
- Department of Biology and Biochemistry, University of Houston, 3507 Cullen Blvd, Houston, TX 77204-5008 Houston, TX, USA
| | - Ratul Chowdhury
- Department of Chemical and Biomedical Engineering, Penn State University, University Park, PA 16802-4400 PA, USA
| | - Yixi Wang
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX 77204-4004 Houston, TX, USA
| | - Costas D Maranas
- Department of Chemical and Biomedical Engineering, Penn State University, University Park, PA 16802-4400 PA, USA
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX 77204-4004 Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, 3507 Cullen Blvd, Houston, TX 77204-5008 Houston, TX, USA
| |
Collapse
|
11
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
12
|
Clinical, biochemical, molecular and therapeutic characteristics of four new patients of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency. Clin Chim Acta 2020; 509:83-90. [PMID: 32470406 DOI: 10.1016/j.cca.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/24/2022]
Abstract
Thirty patients with mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS) deficiency, which is a rare autosomal recessive disorder caused by HMGCS2 gene mutation are known. Here, we present four new patients with this disease. The characteristics including several metabolites of patients were recorded. Next-generation targeted sequencing and multiple sequence alignment of PCR amplified products allowed for mutational analysis of HMGCS2. Minigene assay transcript analysis confirmed pathogenicity of a splice site mutation. All cases had recurrent episodes with infections while they had no symptoms during intermissions. Patient 1, a girl, showed recurrent severe metabolic acidosis after infections from 8 months old and presented with weakness, vomiting and lethargy but had normal blood glucose. After treatment, she revived completely. Patients 2, 3 and 4 were boys who showed episodes of hypoglycemia since 8, 27 and 10 months of age, respectively. Glucose infusion reversed the symptoms. All four patients had hepatomegaly and abdominal imaging showed fatty livers. Serum free fatty acid increased. Urinary dicarboxylic acids and urinary 4-hydroxy-6-methyl-2pyrone presented. Diagnosis was confirmed by HMGCS2 gene analysis and 7 mutations (p.R188H, p.F420S, p.R206C, IVS2 + 1G > T, p.E401*, p.A450Pfs*7 and p.Q427*) of this gene were found. Here we report on the characteristics and genetics of four new patients with HMGCS deficiency. This study will enrich our knowledge of this rare autosomal recessive disorder.
Collapse
|
13
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
14
|
Liu H, Marsafari M, Wang F, Deng L, Xu P. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab Eng 2019; 56:60-68. [PMID: 31470116 DOI: 10.1016/j.ymben.2019.08.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and malonyl-CoA, represent a large family of biological compounds with diversified bioactivity. Harnessing microbial bioconversion is considered as a feasible approach to large-scale production of polyketides from renewable feedstocks. Most of the current polyketide production platform relied on the lengthy glycolytic steps to provide acetyl-CoA, which inherently suffers from complex regulation with metabolically-costly cofactor/ATP requirements. Using the simplest polyketide triacetic acid lactone (TAL) as a testbed molecule, we demonstrate that acetate uptake pathway in oleaginous yeast (Yarrowia lipolytica) could function as an acetyl-CoA shortcut to achieve metabolic optimality in producing polyketides. We identified the metabolic bottlenecks to rewire acetate utilization for efficient TAL production in Y. lipolytica, including generation of the driving force for acetyl-CoA, malonyl-CoA and NADPH. The engineered strain, with the overexpression of endogenous acetyl-CoA carboxylase (ACC1), malic enzyme (MAE1) and a bacteria-derived cytosolic pyruvate dehydrogenase (PDH), affords robust TAL production with titer up to 4.76 g/L from industrial glacier acetic acid in shake flasks, representing 8.5-times improvement over the parental strain. The acetate-to-TAL conversion ratio (0.149 g/g) reaches 31.9% of the theoretical maximum yield. The carbon flux through this acetyl-CoA metabolic shortcut exceeds the carbon flux afforded by the native glycolytic pathways. Potentially, acetic acid could be manufactured in large-quantity at low-cost from Syngas fermentation or heterogenous catalysis (methanol carbonylation). This alternative carbon sources present a metabolic advantage over glucose to unleash intrinsic pathway limitations and achieve high carbon conversion efficiency and cost-efficiency. This work also highlights that low-cost acetic acid could be sustainably upgraded to high-value polyketides by oleaginous yeast species in an eco-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
15
|
Qian S, Li Y, Cirino PC. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli. Microb Cell Fact 2019; 18:18. [PMID: 30696431 PMCID: PMC6350385 DOI: 10.1186/s12934-019-1069-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Salicylate can be biosynthesized from the common metabolic intermediate shikimate and has found applications in pharmaceuticals and in the bioplastics industry. While much metabolic engineering work focused on the shikimate pathway has led to the biosynthesis of a variety of aromatic compounds, little is known about how the relative expression levels of pathway components influence salicylate biosynthesis. Furthermore, some host strain gene deletions that improve salicylate production may be impossible to predict. Here, a salicylate-responsive transcription factor was used to optimize the expression levels of shikimate/salicylate pathway genes in recombinant E. coli, and to screen a chromosomal transposon insertion library for improved salicylate production. Results A high-throughput colony screen was first developed based on a previously designed salicylate-responsive variant of the E. coli AraC regulatory protein (“AraC-SA”). Next, a combinatorial library was constructed comprising a series of ribosome binding site sequences corresponding to a range of predicted protein translation initiation rates, for each of six pathway genes (> 38,000 strain candidates). Screening for improved salicylate production allowed for the rapid identification of optimal gene expression patterns, conferring up to 123% improved production of salicylate in shake-flask culture. Finally, transposon mutagenesis and screening revealed that deletion of rnd (encoding RNase D) from the host chromosome further improved salicylate production by 27%. Conclusions These results demonstrate the effectiveness of the salicylate sensor-based screening platform to rapidly identify beneficial gene expression patterns and gene knockout targets for improving production. Such customized high-throughput tools complement other cell factory engineering strategies. This approach can be generalized for the production of other shikimate-derived compounds. Electronic supplementary material The online version of this article (10.1186/s12934-019-1069-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Qian
- Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, Houston, TX, 77204-4004, USA
| | - Ye Li
- Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, Houston, TX, 77204-4004, USA
| | - Patrick C Cirino
- Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, Houston, TX, 77204-4004, USA.
| |
Collapse
|
16
|
Qian S, Clomburg JM, Gonzalez R. Engineering Escherichia coli as a platform for the in vivo synthesis of prenylated aromatics. Biotechnol Bioeng 2019; 116:1116-1127. [PMID: 30659582 DOI: 10.1002/bit.26932] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/13/2023]
Abstract
Prenylated aromatics (PAs) are an important class of natural products with valuable pharmaceutical applications. To address current limitations of their sourcing from plants, here, we present a microbial platform for the in vivo synthesis of PAs based on the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. As proof of concept, we targeted the prenylation of phenolic/phenolcarboxylic acids, including orsellinic (OSA), divarinolic (DVA), and olivetolic (OLA) acids, whose prenylated products have important biopharmaceutical applications. Although the ability of wild-type NphB to catalyze the prenylation reaction with each acid was validated by in vitro characterization, improvement of product titers in vivo required protein modeling and rational design to engineer NphB variants with increased activity and product selectivity. When a designed NphB variant with eightfold improved catalytic efficiency toward OSA was expressed in an Escherichia coli host engineered to generate geranyl pyrophosphate at high flux through the mevalonate pathway, we observed up to 300 mg/L prenylated products by exogenously supplying OSA. The improved properties of engineered NphB were also utilized to demonstrate the diversification of this in vivo platform by using both different aromatic acceptors and different prenyl donors to generate various PA compounds, including medicinally important compounds such as cannabigerovarinic, cannabigerolic, and grifolic acids.
Collapse
Affiliation(s)
- Shuai Qian
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.,Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.,Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida
| |
Collapse
|
17
|
Obydennov DL, El-Tantawy AI, Sosnovskikh VY. Triacetic acid lactone as a bioprivileged molecule in organic synthesis. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Palmer CM, Alper HS. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides. Biotechnol J 2018; 14:e1700463. [DOI: 10.1002/biot.201700463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Claire M. Palmer
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| |
Collapse
|