1
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Yu C, Fang Y, Huang W, Lei P, Xu X, Sun D, Wu L, Xu H, Li S. Effect of surfactants on the production and biofunction of Tremella fuciformis polysaccharide through submerged fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Application of Multiple Strategies to Improve the Production of the Potential Cancer Drug 4-Acetylantroquinonol B (4-AAQB) by the Rare Fungus Antrodia cinnamomea. Appl Biochem Biotechnol 2022; 194:2720-2730. [PMID: 35257317 DOI: 10.1007/s12010-022-03811-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
4-Acetylantroquinonol B (4-AAQB) was identified in the rare fungus Antrodia cinnamomea and has been proven to be a potential therapeutic agent for cancer treatment. But the extraction of 4-AAQB from the fruit body led to a low yield and limited its further application in the pharmaceutical field. In this work, 4-AAQB production was enhanced in the submerged fermentation by the combination of exogenous additives, surfactants with the in situ extractive fermentation. 4-Methylbenzoic acid was proven to be an efficient additive for the accumulation of 4-AAQB by Antrodia cinnamomea, while 2% (w/v) Tween-80 added on the first day as surfactant and 30% (w/v) oleic acid added on the sixteenth day as extractant were the most available couples for 4-AAQB production in the in situ extractive fermentation. The combination of these multiple strategies resulted in the yield of 4-AAQB to 17.27 mg/g dry cell weight with a titer of 140 mg/L, which was the highest titer of 4-AAQB reported so far. It showed that the combination of these strategies had a significant promotion on 4-AAQB production by A. cinnamomea, which laid a good foundation for its large-scale production and also provided a viable method for the cultivation of other rare fungi.
Collapse
|
4
|
Liu X, Xia Y, Zhang Y, Liang L, Xiong Z, Wang G, Song X, Ai L. Enhancement of antroquinonol production via the overexpression of 4-hydroxybenzoate polyprenyltransferase biosynthesis-related genes in Antrodia cinnamomea. PHYTOCHEMISTRY 2021; 184:112677. [PMID: 33556840 DOI: 10.1016/j.phytochem.2021.112677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Antroquinonol (AQ) as one of the most potent bioactive components in Antrodia cinnamomea (Fomitopsidaceae) shows a broad spectrum of anticancer effects. The lower yield of AQ has hampered its possible clinical application. AQ production may potentially be improved by genetic engineering. In this study, the protoplast-polyethylene glycol method combined with hygromycin as a selection marker was used in the genetic engineering of A. cinnamomea S-29. The optimization of several crucial parameters revealed that the optimal condition for generating maximal viable protoplasts was digestion of 4-day-old germlings with a mixture of enzymes (lysing enzyme, snailase, and cellulase) and 1.0 M MgSO4 for 4 h. The ubiA and CoQ2 genes, which are involved in the synthesis of 4-hydroxybenzoate polyprenyltransferase, were cloned and overexpressed in A. cinnamomea. The results showed that ubiA and CoQ2 overexpression significantly increased AQ production in submerged fermentation. The overexpressing strain produced maximum AQ concentrations of 14.75 ± 0.41 mg/L and 19.25 ± 0.29 mg/L in pCT74-gpd-ubiA and pCT74-gpd-CoQ2 transformants, respectively. These concentrations were 2.00 and 2.61 times greater than those produced by the control, respectively. This research exemplifies how the production of metabolites may be increased by genetic manipulation, and will be invaluable to guide the genetic engineering of other mushrooms that produce medically useful compounds.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, 310023, PR China
| | - Lihong Liang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
5
|
Liu X, Xia Y, Zhang Y, Sang K, Xiong Z, Wang G, Liu X, Ai L. RNA-Seq transcriptomic analyses of Antrodia camphorata to determine antroquinonol and antrodin C biosynthetic mechanisms in the in situ extractive fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4252-4262. [PMID: 32378228 DOI: 10.1002/jsfa.10467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In situ extractive fermentation (ISEF) is an important technique for improving metabolite productivity. The different extractants can induce the synthesis of different bioactive metabolites of Antrodia camphorata during ISEF. However, a lack of research on the molecular genetics of A. camphorata during ISEF currently hinders such studies on metabolite biosynthetic mechanisms. RESULTS To clarify the differentially expressed genes during ISEF, the gene transcriptional expression features of A. camphorata S-29 were analysed. The addition of n-tetradecane as an extractant during ISEF showed more pronounced up-regulation of ubiquinone and other terpenoid-quinone biosynthesis pathway genes (CoQ2, wrbA and ARO8). When oleic acid was used as an extractant, the terpenoid backbone biosynthesis and ubiquinone and other terpenoid-quinone biosynthesis pathways were significantly enriched, and genes (IDI, E2.3.3.10, HMGCR atoB, and CoQ2) related to these two pathways were also significantly up-regulated. The CoQ2 genes encode puru-hydroxybenzoate:polyprenyltransferase, playing an important role in antroquinonol synthesis. The IDI, E2.3.3.10, HMGCR and atoB genes of the terpenoid backbone biosynthesis pathway might play an important role in the synthesis of the triquine-type sesquiterpene antrodin C. CONCLUSION This investigation advances our understanding of how two different extractants of n-tetradecane and oleic acid affect the biosynthesis of metabolites in A. camphorata. It is beneficial to provide potential strategies for improving antrodin C and antroquinonol production by genetic means. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yao Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kunkun Sang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|