1
|
Boucheffa S, Sobhi W, Attoui A, Selli S, Kelebek H, Semmeq A, Benguerba Y. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: experimental and theoretical study. J Biomol Struct Dyn 2022; 40:9870-9884. [PMID: 34114947 DOI: 10.1080/07391102.2021.1936182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this work is to study the content of phenolic compounds in P lentiscus leaves and their antioxidant effect. After extracting the phenolic compounds, fractionation by liquid/liquid partition with increasing polarity gives five extracts. Three of them (ButF, AqF and ButA) were found to have good antioxidant activity. Their IC50s for the inhibition of the free radical formation of DPPH are 1.76 µg/mL, 1.307 µg/ml, and 1.77 µg/mL, respectively. These values are very interesting, considering the effect of the powerful flavonoid quercetin, whose IC50 against DPPH is 1.53 µg/mL. These extracts are also active against xanthine oxidase (XO). The IC50s measured are 0.14 mg/mL, 0.186 mg/mL and 0.33 mg/mL for ButF, Aq F and ButAq F extract respectively, in comparison with allopurinol (0.44 mg/mL). A phytochemical analysis by LC/ESI-MS-MS was performed to explain the observed activities. The results show 22 peaks representing: flavanols, namely catechin, d-Gallocatechin, and gallocatechin gallate. The only flavone detected in the studied extracts was luteolin glucuronide and was found to be in higher amounts in butanolic extract (2,71mg/mL). The phenolic acids and derivatives were also identified in the extracts. A theoretical study was performed to deduce the specificity of the binding between the major compounds identified in the P. lentiscus extract and the xanthine oxidase enzyme using Schrödinger software. The docking procedure was validated using the extraction of ligands from the binding site. Their re-anchoring to the xanthine oxidase structure using quercetin and allopurinol was considered reference molecules. After docking, post-docking minimization was performed to achieve the best scoring poses with the MM-GBSA approach. The dGBind energy of MM-GBSA representing the binding energy of the receptor and the ligand was calculated based on molecular mechanics. Results reveal that β-Glucogallin compounds such as Digalloylquinic acid, Gallocatechin, and Myricetin-3-O rhamnoside are more active than allopurinol, with stronger Docking score (Gscore) and MM-GBSA dGBind.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saliha Boucheffa
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria
| | - Widad Sobhi
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria.,Research Center of Biotechnology (CRBt), Constantine, Algeria
| | - Ayoub Attoui
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria.,Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | | | - Yacine Benguerba
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| |
Collapse
|
2
|
Phenolic profile, safety, antioxidant and anti-inflammatory activities of wasted Bunium ferulaceum Sm. aerial parts. Food Res Int 2022; 160:111714. [DOI: 10.1016/j.foodres.2022.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
|
3
|
Ben Lamine J, Boujbiha MA, Dahane S, Cherifa AB, Khlifi A, Chahdoura H, Yakoubi MT, Ferchichi S, El Ayeb N, Achour L. α-Amylase and α-glucosidase inhibitor effects and pancreatic response to diabetes mellitus on Wistar rats of Ephedra alata areal part decoction with immunohistochemical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9739-9754. [PMID: 30729433 DOI: 10.1007/s11356-019-04339-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Ephedra alata, known as a medicinal plant in China, was used in this study as aqueous extract from aerial parts, for diabetes mellitus treatment. This study was carried out on two parts, in vitro, we tested the effect of the studied extract on the inhibition of α-glucosidase and α-amylase activities, and in vivo on Wistar male rats receiving alloxan intraperitoneally at a rate of 125 mg/kg. Extract (100, 200, and 300 mg/kg of body weight) was administrated for 28 days by oral gavage. Blood glucose, amylase, lipase, and lipid profile level were determined. Oxidative stress was evaluated by enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and by estimation of lipid peroxidation and protein carbonyl (PC) level. Histopathological changes in pancreas were investigated under photonic microscopy using immunohistochemical procedure. Our findings showed that aqueous extract inhibited in vitro both α-glucosidase and α-amylase activities and its use in vivo at 300 mg/kg of body weight restored pancreas weight and weight gain, ameliorated significantly (p ˂ 0.05) biochemical parameters; it prevented the increase in lipid and protein oxidation and the decrease in enzymatic and non-enzymatic defense system. Histological study of treated animals showed a comparable healed regeneration of beta cells.
Collapse
Affiliation(s)
- Jihene Ben Lamine
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia.
- Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| | - Mouhamed Ali Boujbiha
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
| | - Sabra Dahane
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
| | - Amal Ben Cherifa
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
- Faculté des Sciences de Gabes, Université de Gabes, Gabes, Tunisia
| | - Aida Khlifi
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
| | - Hassiba Chahdoura
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
| | - Mouhamed Taher Yakoubi
- Laboratoire d'anatomie et pathologie, Centre Hôpital Universitaire Farhat Hached, Sousse, Tunisia
| | - Salima Ferchichi
- Laboratoire de biochimie, Centre Hôpital Universitaire Farhat Hached, Sousse, Tunisia
| | - Nacer El Ayeb
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
| | - Lotfi Achour
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & Valorisation, Université de Monastir, LR14ES06, BP 74, 5000, Monastir, Tunisia
| |
Collapse
|
4
|
Lakroun Z, Kebieche M, Lahouel A, Zama D, Desor F, Soulimani R. Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7776-7781. [PMID: 25721524 DOI: 10.1007/s11356-014-3885-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/18/2014] [Indexed: 05/28/2023]
Abstract
The neurological damages resulted by endosulfan poisoning is not completely elucidated, especially in cellular organelles such as mitochondria. In the present study, the pro-oxidant effect of endosulfan on brain mitochondria was first investigated. Gavages of endosulfan into rats at the dose of 2 mg/kg induced oxidative stress in this organelle since it provokes a significant reduction of catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) level. In addition, a significant increase in mitochondria swelling and malondialdehyde (MDA) levels were observed in neuronal mitochondria, indicating clearly an intense peroxidation within mitochondria. Second, the protective effect of quercetin (QE) (10 mg/kg) against endosulfan-induced oxidative stress in mitochondria was also assessed. Indeed, the pretreatment of rats with QE protects brain mitochondria from oxidative stress, lipid peroxidation, and mitochondria swelling induced by endosulfan. The activities of antioxidant enzymes and the mitochondrial content of GSH and MDA were returned to control values. Thus, although endosulfan can have neurotoxic effects in brain rats, this toxicity can be prevented by quercetin.
Collapse
Affiliation(s)
- Zhoura Lakroun
- Laboratory of Molecular and Cell Biology (BMC), University of Jijel, Jijel, Algeria
| | | | | | | | | | | |
Collapse
|