1
|
Ou G, Li Q, Zhu L, Zhang Y, Liu Y, Li X, Du L, Jin Y. Intranasal Hydrogel of Armodafinil Hydroxypropyl-β-Cyclodextrin Inclusion Complex for the Treatment of Post-Traumatic Stress Disorder. Saudi Pharm J 2022; 30:265-282. [PMID: 35498223 PMCID: PMC9051980 DOI: 10.1016/j.jsps.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Armodafinil inclusion complex (AIC) hydrogel was prepared and evaluated for its therapeutic effect on Post-traumatic Stress Disorder (PTSD). After computer simulation and physicochemical property investigation, the AIC was formed by lyophilization of armodafinil with ethanol as solvent and hydroxypropyl-beta-cyclodextrin (HP-β-CD) aqueous solution, in which the molar ratio of armodafinil and HP-β-CD was 1–1. The AIC encapsulation efficiency (EE) was (90.98 ± 3.72)% and loading efficiency (LE) was (13.95 ± 0.47)% and it increased the solubility of armodafinil in aqueous solution to 21 times. AIC hydrogel was prepared by adding AIC to methylcellulose (MC) hydrogels (3.33% w/v), and its higher drug release amount and slower release rate were testified by the in-vitro release assay and the rheological test. The mucosa irritation of AIC hydrogel was also evaluated. Healthy group, Model group, Sertraline group with 30 mg/kg sertraline gavage, AIC Hydrogel group with 20 mg/kg AIC hydrogel intranasal administration and AIC Aqueous Solution group with 20 mg/kg AIC aqueous solution gavage were set up for the treatment of mice with PTSD generated from foot shock method. Based on freezing response test in fear-conditioning box and open field test, compared with other groups, PTSD mice in AIC Hydrogel group showed significant improvement in behavioral parameters after 11 days of continuous drug administration and 5 days of drug withdrawal. After sacrifice, the plasma CORT level of PTSD mice in AIC Hydrogel group was elevated compared to Model group. Besides, the western blot (WB) of hippocampal brain-derived neurotrophic factor (BDNF) and amygdala dopamine transporter (DAT) immunohistochemistry sections indicated that AIC hydrogel had a protective effect on the brain tissue of PTSD mice. The brain targeting of intranasal administration was evaluated by fluorescence imaging characteristics of Cy7 hydrogel in the nasal route of drug administration, pharmacokinetics and in-vivo distribution of armodafinil. In short, AIC hydrogel is a promising formulation for the treatment of PTSD based on its high brain delivery and anti-PTSD effect.
Collapse
Affiliation(s)
- Ge Ou
- Medical School of Chinese PLA, Beijing 100853, China
- Pharmacy Department, Chinese PLA General Hospital, Beijing 100853, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qian Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yijing Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Li
- Pharmacy Department, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding authors at: Pharmacy Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China (X. Li). Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China (L. Du).
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Corresponding authors at: Pharmacy Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China (X. Li). Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China (L. Du).
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
2
|
Mori F, Kaneko A, Matsuzawa T, Nishimura T. Computational fluid dynamics simulation wall model predicting air temperature of the nasal passage for nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:839-845. [PMID: 33438763 DOI: 10.1002/ajpa.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Nasal passages adjust the temperature of inhaled air to reach the required body temperature for the lungs. The nasal regions of primates including humans are believed to have experienced anatomical modifications that are adaptive to effective conditioning of the atmospheric air in the habitat for a given species. Measurements of the nasal temperature are required to understand the air-conditioning performance for a given species. Unfortunately, repeated direct measurements within the nasal passage have been technically precluded in most nonhuman primates. MATERIALS AND METHODS Computational fluid dynamics (CFD) simulation is a potential approach for examining the temperature profile in the nasal passage without any direct measurements. The CFD simulation model mainly comprises a computational model to simulate physiological mechanisms and a wall model to simulate the nasal passage's anatomical and physical properties. We used a computational model developed for humans and examined corrections for the developed wall model based on human properties for predicting its performance in Japanese macaques. RESULTS This study confirmed that the epithelium layer thickness of the wall model affects the accuracy of the predictions for macaques. A convenient correction of the thickness based on body mass allows us to simulate the actual air temperature profile in macaques' nasal passage. DISCUSSION The CFD simulations of the wall model corrected with body mass can be applied to other nonhuman primates and mammals. This convenient corrective approach allows us to examine the functional contributions of a specific morphology to the air-conditioning performance without any direct measurements to improve our understanding of primates' functional morphology and physical adaptations to the temperature environment in their habitat.
Collapse
Affiliation(s)
- Futoshi Mori
- Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Akihisa Kaneko
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Teruo Matsuzawa
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | | |
Collapse
|