1
|
Eckstein F, Walter-Rittel TC, Chaudhari AS, Brisson NM, Maleitzke T, Duda GN, Wisser A, Wirth W, Winkler T. The design of a sample rapid magnetic resonance imaging (MRI) acquisition protocol supporting assessment of multiple articular tissues and pathologies in knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100505. [PMID: 39183946 PMCID: PMC11342198 DOI: 10.1016/j.ocarto.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This expert opinion paper proposes a design for a state-of-the-art magnetic resonance image (MRI) acquisition protocol for knee osteoarthritis clinical trials in early and advanced disease. Semi-quantitative and quantitative imaging endpoints are supported, partly amendable to automated analysis. Several (peri-) articular tissues and pathologies are covered, including synovitis. Method A PubMed literature search was conducted, with focus on the past 5 years. Further, osteoarthritis imaging experts provided input. Specific MRI sequences, orientations, spatial resolutions and parameter settings were identified to align with study goals. We strived for implementation on standard clinical scanner hardware, with a net acquisition time ≤30 min. Results Short- and long-term longitudinal MRIs should be obtained at ≥1.5T, if possible without hardware changes during the study. We suggest a series of gradient- and spin-echo-sequences, supporting MOAKS, quantitative analysis of cartilage morphology and T2, and non-contrast-enhanced depiction of synovitis. These sequences should be properly aligned and positioned using localizer images. One of the sequences may be repeated in each participant (re-test), optimally at baseline and follow-up, to estimate within-study precision. All images should be checked for quality and protocol-adherence as soon as possible after acquisition. Alternative approaches are suggested that expand on the structural endpoints presented. Conclusions We aim to bridge the gap between technical MRI acquisition guides and the wealth of imaging literature, proposing a balance between image acquisition efficiency (time), safety, and technical/methodological diversity. This approach may entertain scientific innovation on tissue structure and composition assessment in clinical trials on disease modification of knee osteoarthritis.
Collapse
Affiliation(s)
- Felix Eckstein
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Thula Cannon Walter-Rittel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | | | - Nicholas M. Brisson
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Anna Wisser
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Wolfgang Wirth
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Tobias Winkler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
2
|
Zink JV, Souteyrand P, Guis S, Chagnaud C, Fur YL, Militianu D, Mattei JP, Rozenbaum M, Rosner I, Guye M, Bernard M, Bendahan D. Standardized quantitative measurements of wrist cartilage in healthy humans using 3T magnetic resonance imaging. World J Orthop 2015; 6:641-648. [PMID: 26396941 PMCID: PMC4573509 DOI: 10.5312/wjo.v6.i8.641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/17/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To quantify the wrist cartilage cross-sectional area in humans from a 3D magnetic resonance imaging (MRI) dataset and to assess the corresponding reproducibility.
METHODS: The study was conducted in 14 healthy volunteers (6 females and 8 males) between 30 and 58 years old and devoid of articular pain. Subjects were asked to lie down in the supine position with the right hand positioned above the pelvic region on top of a home-built rigid platform attached to the scanner bed. The wrist was wrapped with a flexible surface coil. MRI investigations were performed at 3T (Verio-Siemens) using volume interpolated breath hold examination (VIBE) and dual echo steady state (DESS) MRI sequences. Cartilage cross sectional area (CSA) was measured on a slice of interest selected from a 3D dataset of the entire carpus and metacarpal-phalangeal areas on the basis of anatomical criteria using conventional image processing radiology software. Cartilage cross-sectional areas between opposite bones in the carpal region were manually selected and quantified using a thresholding method.
RESULTS: Cartilage CSA measurements performed on a selected predefined slice were 292.4 ± 39 mm2 using the VIBE sequence and slightly lower, 270.4 ± 50.6 mm2, with the DESS sequence. The inter (14.1%) and intra (2.4%) subject variability was similar for both MRI methods. The coefficients of variation computed for the repeated measurements were also comparable for the VIBE (2.4%) and the DESS (4.8%) sequences. The carpus length averaged over the group was 37.5 ± 2.8 mm with a 7.45% between-subjects coefficient of variation. Of note, wrist cartilage CSA measured with either the VIBE or the DESS sequences was linearly related to the carpal bone length. The variability between subjects was significantly reduced to 8.4% when the CSA was normalized with respect to the carpal bone length.
CONCLUSION: The ratio between wrist cartilage CSA and carpal bone length is a highly reproducible standardized measurement which normalizes the natural diversity between individuals.
Collapse
|
3
|
Hoffelner T, Pichler I, Moroder P, Osti M, Hudelmaier M, Wirth W, Resch H, Auffarth A. Segmentation of the lateral femoral notch sign with MRI using a new measurement technique. BMC Musculoskelet Disord 2015; 16:217. [PMID: 26293660 PMCID: PMC4546148 DOI: 10.1186/s12891-015-0677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 08/12/2015] [Indexed: 01/02/2023] Open
Abstract
Background The goal of this present study was to precisely determine the dimension and location of the impaction fracture on the lateral femoral condyle in patients with an ACL rupture. Methods All patients with post-injury bi-plane radiographs and MRI images after sustaining a tear to the anterior cruciate ligament were included. Lateral radiographs of the affected knee were inspected for a lateral femoral notch sign. MRIs of patients with a lateral condylopatellar sulcus ≥1.5 mm were used to segment and measure the lateral condylopatellar sulcus. The MRI examination was interpreted by an expert in musculoskeletal radiology. The study was approved by the ethics committee of the state of Salzburg. Results A “lateral femoral notch sign”was seen in 50 patients. The average total surface area of the lateral femoral condyle was 3271.7 mm2 (SD 739.5 mm2). The defect had a mean surface area of 266.1 mm2 (SD 125.5 mm2), a mean volume of 456.5 mm3 (SD 278.5 mm3), a mean depth of 3.0 mm (SD 0.8 mm). On average 169 mm2 (SD 99.6 mm2) of the surface of the condyle were affected by the impaction fracture which corresponds to 5.2 % (SD 2.8 %) of the surface of the lateral femoral condyle. In 51 % the impaction fracture was located in the central-external area of the femoral condyle. Conclusions In cases of a clinically suspected ACL rupture lateral radiographs of the knee should be checked for a lateral femoral notch sign further MRI for confirmation should be performed. Knowing of the precise defect on the lateral femoral condyle is an additionally valuable information, as concomitant injuries to a rupture of the anterior cruciate ligament increase the risk for early-onset osteoarthritis in the future.
Collapse
Affiliation(s)
- Thomas Hoffelner
- Department of Traumatology, Sports Injuries of the Paracelsus Medical University, Salzburg, Austria.
| | - Isabel Pichler
- Department of Traumatology, Sports Injuries of the Paracelsus Medical University, Salzburg, Austria.
| | - Philipp Moroder
- Department of Traumatology, Sports Injuries of the Paracelsus Medical University, Salzburg, Austria.
| | - Michael Osti
- Department of Traumatology, Sports Injuries of the University of Feldkirch, Voralrberg, Austria.
| | - Martin Hudelmaier
- Institute of Anatomy and Musculoskeletal Research of the Paracelsus Medical University, Salzburg, Austria.
| | - Wolfgang Wirth
- Institute of Anatomy and Musculoskeletal Research of the Paracelsus Medical University, Salzburg, Austria.
| | - Herbert Resch
- Department of Traumatology, Sports Injuries of the Paracelsus Medical University, Salzburg, Austria.
| | - Alexander Auffarth
- Department of Traumatology, Sports Injuries of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
Imaging of cartilage and bone: promises and pitfalls in clinical trials of osteoarthritis. Osteoarthritis Cartilage 2014; 22:1516-32. [PMID: 25278061 PMCID: PMC4351816 DOI: 10.1016/j.joca.2014.06.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/22/2014] [Accepted: 06/22/2014] [Indexed: 02/02/2023]
Abstract
Imaging in clinical trials is used to evaluate subject eligibility, and/or efficacy of intervention, supporting decision making in drug development by ascertaining treatment effects on joint structure. This review focusses on imaging of bone and cartilage in clinical trials of (knee) osteoarthritis. We narratively review the full-text literature on imaging of bone and cartilage, adding primary experience in the implementation of imaging methods in clinical trials. Aims and constraints of applying imaging in clinical trials are outlined. The specific uses of semi-quantitative and quantitative imaging biomarkers of bone and cartilage in osteoarthritis trials are summarized, focusing on radiography and magnetic resonance imaging (MRI). Studies having compared both imaging methodologies directly and those having established a relationship between imaging biomarkers and clinical outcomes are highlighted. To make this review of practical use, recommendations are provided as to which imaging protocols are ideal for capturing specific aspects of bone and cartilage tissue, and pitfalls in their usage are highlighted. Further, the longitudinal sensitivity to change, of different imaging methods is reported for various patient strata. From these power calculations can be accomplished, provided the strength of the treatment effect is known. In conclusion, current imaging methodologies provide powerful tools for scoring and measuring morphological and compositional aspects of most articular tissues, capturing longitudinal change with reasonable to excellent sensitivity. When employed properly, imaging has tremendous potential for ascertaining treatment effects on various joint structures, potentially over shorter time scales than required for demonstrating effects on clinical outcomes.
Collapse
|
5
|
Van Ginckel A, Verdonk P, Witvrouw E. Cartilage adaptation after anterior cruciate ligament injury and reconstruction: implications for clinical management and research? A systematic review of longitudinal MRI studies. Osteoarthritis Cartilage 2013; 21:1009-24. [PMID: 23685095 DOI: 10.1016/j.joca.2013.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To summarize the current evidence of magnetic resonance imaging (MRI)-measured cartilage adaptations following anterior cruciate ligament (ACL) reconstruction and of the potential factors that might influence these changes, including the effect of treatment on the course of cartilage change (i.e., surgical vs non-surgical treatment). METHODS A literature search was conducted in seven electronic databases extracting 12 full-text articles. These articles reported on in vivo MRI-related cartilage longitudinal follow-up after ACL injury and reconstruction in "young" adults. Eligibility and methodological quality was rated by two independent reviewers. A best-evidence synthesis was performed for reported factors influencing cartilage changes. RESULTS Methodological quality was heterogenous amongst articles (i.e., score range: 31.6-78.9%). Macroscopic changes were detectable as from 2 years follow-up next to or preceded by ultra-structural and functional (i.e., contact-deformation) changes, both in the lateral and medial compartment. Moderate-to-strong evidence was presented for meniscal lesion or meniscectomy, presence of bone marrow lesions (BMLs), time from injury, and persisting altered biomechanics, possibly affecting cartilage change after ACL reconstruction. First-year morphological change was more aggravated in ACL reconstruction compared to non-surgical treatment. CONCLUSION In view of osteoarthritis (OA) prevention after ACL reconstruction, careful attention should be paid to the rehabilitation process and to the decision on when to allow return to sports. These decisions should also consider cartilage fragility and functional adaptations after surgery. In this respect, the first years following surgery are of paramount importance for prevention or treatment strategies that aim at impediment of further matrix deterioration. Considering the low number of studies and the methodological caveats, more research is needed.
Collapse
Affiliation(s)
- A Van Ginckel
- Fellowship Research Foundation, FWO Aspirant, Flanders, Brussels, Belgium.
| | | | | |
Collapse
|