1
|
By S, Kahl A, Cogswell PM. Alzheimer's Disease Clinical Trials: What Have We Learned From Magnetic Resonance Imaging. J Magn Reson Imaging 2024. [PMID: 39031716 DOI: 10.1002/jmri.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia worldwide with rising prevalence, incidence and mortality. Despite many decades of research, there remains an unmet need for disease-modifying treatment that can significantly alter the progression of disease. Recently, with United States Food and Drug Administration (FDA) drug approvals, there have been tremendous advances in this area, with agents demonstrating effects on cognition and biomarkers. Magnetic resonance imaging (MRI) plays an instrumental role in these trials. This review article aims to outline how MRI is used for screening eligibility, monitoring safety and measuring efficacy in clinical trials, leaning on the landscape of past and recent AD clinical trials that have used MRI as examples; further, insight on promising MRI biomarkers for future trials is provided. LEVEL OF EVIDENCE: 1. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Samantha By
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Anja Kahl
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | |
Collapse
|
2
|
Wang X, Bishop C, O'Callaghan J, Gayhoor A, Albani J, Theriault W, Chappell M, Golay X, Wang D, Becerra L. MRI assessment of cerebral perfusion in clinical trials. Drug Discov Today 2023; 28:103506. [PMID: 36690177 DOI: 10.1016/j.drudis.2023.103506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Neurodegenerative mechanisms affect the brain through a variety of processes that are reflected as changes in brain structure and physiology. Although some biomarkers for these changes are well established, others are at different stages of development for use in clinical trials. One of the most challenging biomarkers to harmonize for clinical trials is cerebral blood flow (CBF). There are several magnetic resonance imaging (MRI) methods for quantifying CBF without the use of contrast agents, in particular arterial spin labeling (ASL) perfusion MRI, which has been increasingly applied in clinical trials. In this review, we present ASL MRI techniques, including strategies for implementation across multiple imaging centers, levels of confidence in assessing disease progression and treatment effects, and details of image analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Chappell
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham
| | - Xavier Golay
- MR Neurophysics and Translational Neuroscience, Queen Square UCL Institute of Neurology, University College London; Gold Standard Phantoms
| | - Danny Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC)
| | | |
Collapse
|
3
|
Neumann K, Günther M, Düzel E, Schreiber S. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14:871612. [PMID: 35663571 PMCID: PMC9161030 DOI: 10.3389/fnagi.2022.871612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this pilot study, we investigated microvascular impairment in patients with cerebral small vessel disease (CSVD) using non-invasive arterial spin labeling (ASL) magnetic resonance imaging (MRI). This method enabled us to measure the perfusion parameters, cerebral blood flow (CBF), and arterial transit time (ATT), and the effective T1-relaxation time (T1eff) to research a novel approach of assessing perivascular clearance. CSVD severity was characterized using the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) and included a rating of white matter hyperintensities (WMHs), lacunes, enlarged perivascular spaces (EPVSs), and cerebral microbleeds (CMBs). Here, we found that CBF decreases and ATT increases with increasing CSVD severity in patients, most prominent for a white matter (WM) region-of-interest, whereas this relation was almost equally driven by WMHs, lacunes, EPVSs, and CMBs. Additionally, we observed a longer mean T1eff of gray matter and WM in patients with CSVD compared to elderly controls, providing an indication of impaired clearance in patients. Mainly T1eff of WM was associated with CSVD burden, whereas lobar lacunes and CMBs contributed primary to this relation compared to EPVSs of the centrum semiovale. Our results complement previous findings of CSVD-related hypoperfusion by the observation of retarded arterial blood arrival times in brain tissue and by an increased T1eff as potential indication of impaired clearance rates using ASL.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Katja Neumann
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Neumann K, Schidlowski M, Günther M, Stöcker T, Düzel E. Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly. Front Neurosci 2021; 15:711898. [PMID: 34489631 PMCID: PMC8417446 DOI: 10.3389/fnins.2021.711898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Martin Schidlowski
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Center for Behavioral Brain Science, Magdeburg, Germany
| |
Collapse
|
5
|
Pinto J, Chappell MA, Okell TW, Mezue M, Segerdahl AR, Tracey I, Vilela P, Figueiredo P. Calibration of arterial spin labeling data-potential pitfalls in post-processing. Magn Reson Med 2020; 83:1222-1234. [PMID: 31605558 PMCID: PMC6972489 DOI: 10.1002/mrm.28000] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE To assess the impact of the different post-processing options in the calibration of arterial spin labeling (ASL) data on perfusion quantification and its reproducibility. THEORY AND METHODS Absolute quantification of perfusion measurements is one of the promises of ASL techniques. However, it is highly dependent on a calibration procedure that involves a complex processing pipeline for which no standardized procedure has been fully established. In this work, we systematically compare the main ASL calibration methods as well as various post-processing calibration options, using 2 data sets acquired with the most common sequences, pulsed ASL and pseudo-continuous ASL. RESULTS Significant and sometimes large discrepancies in ASL perfusion quantification were obtained when using different post-processing calibration options. Nevertheless, when using a set of theoretically based and carefully chosen options, only small differences were observed for both reference tissue and voxelwise methods. The voxelwise and white matter reference tissue methods were less sensitive to post-processing options than the cerebrospinal fluid reference tissue method. However, white matter reference tissue calibration also produced poorer reproducibility results. Moreover, it may also not be an appropriate reference in case of white matter pathology. CONCLUSION Poor post-processing calibration options can lead to large errors in perfusion quantification, and a complete description of the calibration procedure should therefore be reported in ASL studies. Overall, our results further support the voxelwise calibration method proposed by the ASL white paper, particularly given the advantage of being relatively simple to implement and intrinsically correcting for the coil sensitivity profile.
Collapse
Affiliation(s)
- Joana Pinto
- Institute for Systems and Robotics and Department of BioengineeringInstituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - Michael A. Chappell
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Institute of Biomedical EngineeringDepartment of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
| | - Thomas W. Okell
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Melvin Mezue
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Andrew R. Segerdahl
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Irene Tracey
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Nuffield Division of AnaestheticsNuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUnited Kingdom
| | | | - Patrícia Figueiredo
- Institute for Systems and Robotics and Department of BioengineeringInstituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| |
Collapse
|
6
|
Mutsaerts HJMM, Petr J, Thomas DL, de Vita E, Cash DM, van Osch MJP, Golay X, Groot PFC, Ourselin S, van Swieten J, Laforce R, Tagliavini F, Borroni B, Galimberti D, Rowe JB, Graff C, Pizzini FB, Finger E, Sorbi S, Castelo Branco M, Rohrer JD, Masellis M, MacIntosh BJ. Comparison of arterial spin labeling registration strategies in the multi-center GENetic frontotemporal dementia initiative (GENFI). J Magn Reson Imaging 2018; 47:131-140. [PMID: 28480617 PMCID: PMC6485386 DOI: 10.1002/jmri.25751] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/13/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To compare registration strategies to align arterial spin labeling (ASL) with 3D T1-weighted (T1w) images, with the goal of reducing the between-subject variability of cerebral blood flow (CBF) images. MATERIALS AND METHODS Multi-center 3T ASL data were collected at eight sites with four different sequences in the multi-center GENetic Frontotemporal dementia Initiative (GENFI) study. In a total of 48 healthy controls, we compared the following image registration options: (I) which images to use for registration (perfusion-weighted images [PWI] to the segmented gray matter (GM) probability map (pGM) (CBF-pGM) or M0 to T1w (M0-T1w); (II) which transformation to use (rigid-body or non-rigid); and (III) whether to mask or not (no masking, M0-based FMRIB software library Brain Extraction Tool [BET] masking). In addition to visual comparison, we quantified image similarity using the Pearson correlation coefficient (CC), and used the Mann-Whitney U rank sum test. RESULTS CBF-pGM outperformed M0-T1w (CC improvement 47.2% ± 22.0%; P < 0.001), and the non-rigid transformation outperformed rigid-body (20.6% ± 5.3%; P < 0.001). Masking only improved the M0-T1w rigid-body registration (14.5% ± 15.5%; P = 0.007). CONCLUSION The choice of image registration strategy impacts ASL group analyses. The non-rigid transformation is promising but requires validation. CBF-pGM rigid-body registration without masking can be used as a default strategy. In patients with expansive perfusion deficits, M0-T1w may outperform CBF-pGM in sequences with high effective spatial resolution. BET-masking only improves M0-T1w registration when the M0 image has sufficient contrast. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:131-140.
Collapse
Affiliation(s)
- Henri JMM Mutsaerts
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jan Petr
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - David L Thomas
- Institute of Neurology, University College London, London, United Kingdom
| | - Enrico de Vita
- Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Institute of Neurology, University College London, London, United Kingdom
| | - Matthias JP van Osch
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xavier Golay
- Institute of Neurology, University College London, London, United Kingdom
| | - Paul FC Groot
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME), CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Barbara Borroni
- Department of Medical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- University of Milan, Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francesca B Pizzini
- Neuroradiology, Department of Diagnostics and Pathology, Verona University Hospital, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | - Sandro Sorbi
- Fondazione Don Carlo Gnocchi, Scientific Institute, Florence, Italy
| | - Miguel Castelo Branco
- Neurology Department, Faculty of Medicine of Lisbon, Portugal
- Institute for Nuclear Sciences Applied to Health, Brain Imaging Network of Portugal, Coimbra, Portugal
| | - Jonathan D Rohrer
- Institute of Neurology, University College London, London, United Kingdom
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, Toronto, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Ge Q, Peng W, Zhang J, Weng X, Zhang Y, Liu T, Zang YF, Wang Z. Short-term apparent brain tissue changes are contributed by cerebral blood flow alterations. PLoS One 2017; 12:e0182182. [PMID: 28820894 PMCID: PMC5562307 DOI: 10.1371/journal.pone.0182182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/13/2017] [Indexed: 01/16/2023] Open
Abstract
Structural MRI (sMRI)-identified tissue "growth" after neuropsychological training has been reported in many studies but the origins of those apparent tissue changes (ATC) still remain elusive. One possible contributor to ATC is brain perfusion since T1-weighted MRI, the tool used to identify ATC, is sensitive to perfusion-change induced tissue T1 alterations. To test the hypothetical perfusion contribution to ATC, sMRI data were acquired before and after short-term global and regional perfusion manipulations via intaking a 200 mg caffeine pill and performing a sensorimotor task. Caffeine intake caused a global CBF reduction and apparent tissue density reduction in temporal cortex, anterior cingulate cortex, and the limbic area; sensorimotor task induced CBF increase and apparent tissue increase in spatially overlapped brain regions. After compensating CBF alterations through a voxel-wise regression, the ATC patterns demonstrated in both experiments were substantially suppressed. These data clearly proved existence of the perfusion contribution to short-term ATC, and suggested a need for correcting perfusion changes in longitudinal T1-weighted structural MRI analysis if a short-term design is used.
Collapse
Affiliation(s)
- Qiu Ge
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Wei Peng
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Physics, Hangzhou Normal University, Hangzhou, China
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | | | - Thomas Liu
- Department of Radiology, University of California San Diego, San Diego, United States of America
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Department of Radiology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| |
Collapse
|
8
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
9
|
Hu HH, Li Z, Pokorney AL, Chia JM, Stefani N, Pipe JG, Miller JH. Assessment of cerebral blood perfusion reserve with acetazolamide using 3D spiral ASL MRI: Preliminary experience in pediatric patients. Magn Reson Imaging 2016; 35:132-140. [PMID: 27580517 DOI: 10.1016/j.mri.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MATERIALS AND METHODS MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. RESULTS 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. CONCLUSION 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Zhiqiang Li
- Keller Center for Imaging Innovation, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Amber L Pokorney
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | | | - James G Pipe
- Keller Center for Imaging Innovation, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jeffrey H Miller
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|