1
|
Duan S, Wu X, Shi J, Li W, Dong Q, Xin SX. Study of the radiofrequency-induced heating inside the human head with dental implants at 7 T. Bioelectromagnetics 2024; 45:82-93. [PMID: 37860924 DOI: 10.1002/bem.22490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Conductive dental implants are commonly used in restorative therapy to replace missing teeth in patients. Ensuring the radiofrequency (RF) safety of these patients is crucial when performing 7 T magnetic resonance scans of their heads. This study aimed to investigate RF-induced heating inside the human head with dental implants at 7 T. Dental implants and their attachments were fabricated and integrated into an anatomical head model, creating different measurement configurations (MCs). Numerical simulations were conducted using a 7 T transmit coil loaded with the anatomical head model, both with and without dental implants. The maximum temperatures inside the head for various MCs were computed using the maximum permissible input powers (MPIPs) obtained without dental implants and compared with published limits. Additionally, the MPIPs with dental implants were calculated for scenarios where the temperature limits were exceeded. The maximum temperatures observed inside the head ranged from 38.4°C to 39.6°C. The MPIPs in the presence of dental implants were 81.9%-97.3% of the MPIPs in the absence of dental implants for scenarios that exceeded the regulatory limit. RF-induced heating effect of the dental implants was not significant. The safe scanning condition in terms of RF exposure was achievable for patients with dental implants. For patients with conductive dental implants of unknown configuration, it is recommended to reduce the input power by 18.1% of MPIP without dental implants to ensure RF safety.
Collapse
Affiliation(s)
- Song Duan
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiuxiu Wu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Juntian Shi
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenhui Li
- Department of Dentistry, Air Force Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong, China
| | - Qingshan Dong
- Department of Stomatology, General Hospital of Central Theater Command of PLA, WuHan, China
| | - Sherman Xuegang Xin
- Biophysics and Medical Imaging Lab, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Shaffer A, Nigh N, Weisbaum D, Anderson A, Wszalek T, Sutton BP, Webb A, Damon B, Moussa I, Arnold PM. Cardiothoracic and Vascular Surgery Implant Compatibility With Ultrahigh Field Magnetic Resonance Imaging (4.7 Tesla and 7 Tesla). Am J Cardiol 2023; 201:239-246. [PMID: 37392607 DOI: 10.1016/j.amjcard.2023.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across medical specialties, particularly, clinical neurosciences and orthopedics. Investigational 7 T MRI has also been performed in cardiology. A limiting factor for expansion of the role of 7 T, irrespective of the body part being imaged, is the sparse testing of biomedical implant compatibility at field strengths >3 T. Implant compatibility can be tested following the American Society for Testing and Materials International guidelines. To assess the current state of cardiovascular implant safety at field strengths >3 T, a systematic search was performed using PubMed, Web of Science, and citation matching. Studies written in English that included at least 1 cardiovascular-related implant and at least 1 safety outcome (deflection angle, torque, or temperature change) were included. Data were extracted for the implant studied, implant composition, deflection angle, torque, and temperature change, and the American Society for Testing and Materials International standards were followed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines for scoping reviews were followed. A total of 9 studies were included. A total of 34 cardiovascular-related implants tested ex vivo at 7 T and 91 implants tested ex vivo at 4.7 T were included. The implants included vascular grafts and conduits, vascular access ports, peripheral and coronary stents, caval filters, and artificial valves. A total of 2 grafts, 1 vascular access port, 2 vena cava filters, and 5 stents were identified as incompatible with the 7 T MRI. All incompatible stents were 40 mm in length. Based on the safety outcomes reported, we identify several implants that may be compatible with >3 T MRI. This scoping review seeks to concisely summarize all the cardiovascular-related implants tested for ultrahigh field MRI compatibility to date.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Noah Nigh
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - David Weisbaum
- Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois
| | - Aaron Anderson
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tracey Wszalek
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bradley P Sutton
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden University Medical Center, Leiden, The Netherlands
| | - Bruce Damon
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Issam Moussa
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Heart and Vascular Institute, Carle Foundation Hospital, Urbana, Illinois
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois.
| |
Collapse
|
4
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Classification Scheme of Heating Risk during MRI Scans on Patients with Orthopaedic Prostheses. Diagnostics (Basel) 2022; 12:diagnostics12081873. [PMID: 36010224 PMCID: PMC9406867 DOI: 10.3390/diagnostics12081873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the large variety of possible clinical scenarios, a reliable heating-risk assessment is not straightforward when patients with arthroplasty undergo MRI scans. This paper proposes a simple procedure to estimate the thermal effects induced in patients with hip, knee, or shoulder arthroplasty during MRI exams. The most representative clinical scenarios were identified by a preliminary frequency analysis, based on clinical service databases, collecting MRI exams of 11,658 implant carrier patients. The thermal effects produced by radiofrequency and switching gradient fields were investigated through 588 numerical simulations performed on an ASTM-like phantom, considering four prostheses, two static field values, seven MR sequences, and seven regions of imaging. The risk assessment was inspired by standards for radiofrequency fields and by scientific studies for gradient fields. Three risk tiers were defined for the radiofrequency, in terms of whole-body and local SAR averages, and for GC fields, in terms of temperature elevation. Only 50 out of 588 scenarios require some caution to be managed. Results showed that the whole-body SAR is not a self-reliant safety parameter for patients with metallic implants. The proposed numerical procedure can be easily extended to any other scenario, including the use of detailed anatomical models.
Collapse
|
6
|
Hansson B, Simic M, Olsrud J, Markenroth Bloch K, Owman T, Sundgren PC, Björkman-Burtscher IM. MR-safety in clinical practice at 7T: Evaluation of a multistep screening process in 1819 subjects. Radiography (Lond) 2021; 28:454-459. [PMID: 34973869 DOI: 10.1016/j.radi.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION MR facilities must implement and maintain adequate screening and safety procedures to ensure safety during MR examinations. The aim of this study was to evaluate a multi-step MR safety screening process used at a 7T facility regarding incidence of different types of safety risks detected during the safety procedure. METHODS Subjects scheduled for an MR examination and having entered the 7T facility during 2016-2019 underwent a pre-defined multi-step MR safety screening process. Screening documentation of 1819 included subjects was reviewed, and risks identified during the different screening steps were compiled. These data were also related to documented decisions made by a 7T MR safety committee and reported MR safety incidents. RESULTS Passive or active implants (n = 315) were identified in a screening form and/or an additional documented interview in 305 subjects. Additional information not previously self-reported by the subject, regarding implants necessitating safety decisions performed by the staff was revealed in the documented interview in 102 subjects (106 items). In total, the 7T MR safety committee documented a decision in 36 (2%) of the included subjects. All of these subjects were finally cleared for scanning. CONCLUSION A multi-step screening process allows a thorough MR screening of subjects, avoiding safety incidents. Different steps in the process allow awareness to rise and items to be detected that were missed in earlier steps. IMPLICATIONS FOR PRACTICE Safety questions posed at a single timepoint during an MR screening process might not reveal all safety risks. Repetition and rephrasing of screening questions leads to increased detection of safety risks. This could be effectively mitigated by a multi-step screening process. A multi-disciplinary safety committee is efficient at short notice responding to unexpected safety issues.
Collapse
Affiliation(s)
- B Hansson
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden.
| | - M Simic
- Karolinska University Hospital, Solna Stockholm, Sweden
| | - J Olsrud
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - T Owman
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| | - P C Sundgren
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden; Lund University Bioimaging Center (LBIC), Lund University, Lund, Sweden
| | - I M Björkman-Burtscher
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden; Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Fujimoto K, Zaidi TA, Lampman D, Guag JW, Etheridge S, Habara H, Rajan SS. Comparison of SAR distribution of hip and knee implantable devices in 1.5T conventional cylindrical-bore and 1.2T open-bore vertical MRI systems. Magn Reson Med 2021; 87:1515-1528. [PMID: 34775615 DOI: 10.1002/mrm.29007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE There is increasing use of open-bore vertical MR systems that consist of two planar RF coils. A recent study showed that the RF-induced heating of a neuromodulation device was much lower in the open-bore system at the brain and the chest imaging landmarks. This study focused on the hip and knee implants and compared the specific absorption rate (SAR) distribution in human models in a 1.2T open-bore coil with that of a 1.5T conventional birdcage coil. METHODS Computational modeling results were compared against the measurement values using a saline phantom. The differences in RF exposure were examined between a 1.2T open-bore coil and a 1.5T conventional birdcage coil using SAR in an anatomical human model. RESULTS Modeling setups were validated. The body placed closed to the coil elements led to high SAR values in the birdcage system compared with the open-bore system. CONCLUSION Our computational modeling showed that the 1.2T planar system demonstrated a lower intensity of SAR distribution adjacent to hip and knee implants compared with the 1.5T conventional birdcage system.
Collapse
Affiliation(s)
- Kyoko Fujimoto
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tayeb A Zaidi
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Joshua W Guag
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Hideta Habara
- Healthcare Business Unit, Hitachi, Taito, Tokyo, Japan
| | - Sunder S Rajan
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Abstract
Food and Drug Administration approval of 7T MR imaging allows ultrahigh-field neuroimaging to extend from the research realm into the clinical realm. Increased signal is clinically advantageous for smaller voxels and thereby high spatial resolution imaging, with additional advantages of increased tissue contrast. Susceptibility, time-of-flight signal, and blood oxygen level-dependent signal also have favorable clinical benefit from 7T. This article provides a survey of clinical cases showcasing some advantages of 7T.
Collapse
|
9
|
Abstract
After introduction of the first human 7 tesla (7T) system in 1999, 7T MR systems have been employed as one of the most advanced platforms for human MR research for more than 20 years. Currently, two 7T MR models are approved for clinical use in the U.S.A. The approval facilitated introduction of the 7T system, summing up to around 100 worldwide. The approval in Japan is much awaited. As a clinical MR scanner, the 7T MR system is drawing attention in terms of safety.Several large-sized studies on bioeffects have been reported for vertigo, dizziness, motion disturbances, nausea, and others. Such effects might also be found in MR workers and researchers. Frequency and severity of reported bioeffects will be presented and discussed, including their variances. The high resonance frequency and shorter RF wavelength of 7T increase the concern about the safety. Homogeneous RF pulse excitation is difficult even for the brain, and a multi-channel parallel transmit (pTx) system is considered mandatory. However, pTx may create a hot spot, which makes the estimation of specific absorption rate (SAR) to be difficult. The stronger magnetic field of 7T causes a large force of displacement and heating on metallic implants or devices, and the scan of patients with them should not be conducted at 7T. However, there are some opinions that such patients might be scanned even at 7T, if certain criteria are met. This article provides a brief review on the effect of the static magnetic field on humans (MR subjects, workers, and researchers) and neurons, in addition to scan sound, SAR, and metal implants and devices. Understanding and avoiding adverse effects will contribute to the reduction in safety risks and the prevention of incidents.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Dinh Hd Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| |
Collapse
|
10
|
Fagan AJ, Bitz AK, Björkman-Burtscher IM, Collins CM, Kimbrell V, Raaijmakers AJ. 7T MR Safety. J Magn Reson Imaging 2021; 53:333-346. [PMID: 32830900 PMCID: PMC8170917 DOI: 10.1002/jmri.27319] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.
Collapse
Affiliation(s)
- Andrew J. Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas K. Bitz
- Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Isabella M. Björkman-Burtscher
- Department of Radiology, University of Gothenburg, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher M. Collins
- Center for Advanced Imaging Innovation and Research, NYU Langone Medical Center, New York, New York, USA
| | - Vera Kimbrell
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Asante S, Acheampong F. Patients' knowledge, perception, and experience during magnetic resonance imaging in Ghana: A single centre study. Radiography (Lond) 2020; 27:622-626. [PMID: 33341380 DOI: 10.1016/j.radi.2020.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The Magnetic Resonance Imaging (MRI) environment has the potency of inducing anxiety, panic attacks, and claustrophobia in patients with some patients describing it as being placed in a long confining tube. Therefore, having patients that are well-informed concerning the diagnostic tests they are about to undergo can contribute to these patients experiencing reduced anxiety, greater satisfaction, and participation in their care which is key in gaining patients' cooperation and compliance during imaging procedures such as MRI. This study purposed to assess patients' knowledge, perception and experience when undergoing MRI examination. METHODS A prospective quantitative approach was adopted for the study and was conducted in a leading teaching hospital in the Greater Accra region of Ghana. The study involved patients who were referred to undergo MRI examination from June to December 2019. Primary data was collected using closed-ended questionnaires as the research tool. The researchers self-administered and explained the details of the questionnaire thoroughly to all the patients. RESULTS Two hundred and four (51%) out of the 400 respondents were males as compared with 196 (49%) females. The most common age group was 41-60 years with a total number of 156 (39%) participants. 120 (30%) indicated they were schooled on MRI by family and friends, 88 (22%) by their referring clinicians, and 65 (16%) indicated other health personnel as their source of knowledge. 228 (57%) indicated that MRI is not safe for pregnant women, 130 (32.5%) indicated it was whilst 42 (10.5%) were not sure. 208 (52%) of the respondents believed MRI can cause cancer, 140 (35%) responded that it does not whilst 52 (13%) were not sure. Also, 312 (78%) indicated that their doctors did not inform them about the use of the contrast medium. CONCLUSION The study revealed that majority of the respondents were schooled on MRI by family and friends instead of their referring clinicians. Most of these family and friends may not necessarily be qualified health personnel which accounted for more than half of the respondents having a misconception that MRI causes cancer similar to other ionizing imaging modalities. The study further revealed that some referring clinicians did not educate their patients on requested MRI examinations causing radiology staff to spend more time educating them resulting in a decrease in productivity. IMPLICATIONS FOR PRACTICE The study will bring to bear the gaps in patient's knowledge concerning MRI which will help referring clinicians and radiology staff adopt strategies to ensure that patients are well educated on MRI examinations they have been referred to undertake. This will in effect reduce the time spent by radiology staff in educating and gaining patients' compliance during such examinations resulting in a decrease in waiting and scanning time leading to an overall increase in workflow.
Collapse
Affiliation(s)
- S Asante
- Department of Medical Imaging, School of Allied Health Sciences, University of Health and Allied Sciences (UHAS), Ho, Ghana; Radiology Department, Metropolitan Hospital, P.O. Box 174, Cape Coast, Ghana.
| | - F Acheampong
- Department of Basic Sciences, School of Basic & Biomedical Sciences, University of Health and Allied Sciences (UHAS), Ho, Ghana
| |
Collapse
|
12
|
Alsing KK, Johannesen HH, Hansen RH, Serup J. Tattoo complications and magnetic resonance imaging: a comprehensive review of the literature. Acta Radiol 2020; 61:1695-1700. [PMID: 32216450 DOI: 10.1177/0284185120910427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tattooed patients undergoing magnetic resonance imaging (MRI) can develop cutaneous complications during the procedure. Our aim was to review all published case reports on MRI-induced tattoo complications to identify a possible pattern. So far, 17 cases have been reported. Five (29%) of the cases were in cosmetic tattoos. Symptoms are abrupt and painful with fast onset during MRI, sometimes requiring termination of the procedure. Clinical signs are absent or manifested as inflammation sensed as burning. No thermal skin burns have been recognized. Full recovery is fast, with no sequelae. MRI-induced tattoo complications are uncommon. Patients with cosmetic and traditional tattoos can undergo routine MRI.
Collapse
Affiliation(s)
- Kasper Køhler Alsing
- Department of Dermatology, the Tattoo Clinic, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Rasmus Hvass Hansen
- Department of Radiology, Research Group, Copenhagen University Hospital, Herlev, Denmark
| | - Jørgen Serup
- Department of Dermatology, the Tattoo Clinic, Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
13
|
Fagan AJ, Amrami KK, Welker KM, Frick MA, Felmlee JP, Watson RE. Magnetic Resonance Safety in the 7T Environment. Magn Reson Imaging Clin N Am 2020; 28:573-582. [PMID: 33040997 DOI: 10.1016/j.mric.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The arrival of 7T MR imaging into the clinic represents a significant step-change in MR technology. This article describes safety concerns associated with imaging at 7T, including the increased magnetic forces on magnetic objects at 7T and the interaction of the 300 MHz (Larmor) radiofrequency energy with tissue in the body. A dedicated multidisciplinary 7T Safety team should develop safety policies and procedures to address these safety challenges and keep abreast of best practice in the field. The off-label imaging of implanted devices is discussed, and also the need for staff training to deal with complexities of patient handling and image interpretation.
Collapse
Affiliation(s)
- Andrew J Fagan
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | - Kimberly K Amrami
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Matthew A Frick
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Image Artifact Management for Clinical Magnetic Resonance Imaging on a 7 T Scanner Using Single-Channel Radiofrequency Transmit Mode. Invest Radiol 2020; 54:781-791. [PMID: 31503079 DOI: 10.1097/rli.0000000000000598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this work was to devise mitigation strategies for addressing a range of image artifacts on a clinical 7 T magnetic resonance imaging scanner using the regulatory-approved single-channel radiofrequency transmit mode and vendor-supplied radiofrequency coils to facilitate clinical scanning within reasonable scan times. MATERIALS AND METHODS Optimized imaging sequence protocols were developed for routine musculoskeletal knee and neurological imaging. Sources of severe image nonuniformities were identified, and mitigation strategies were devised. A range of custom-made high permittivity dielectric pads were used to compensate for B1 and B1 inhomogeneities, and also for magnetic susceptibility-induced signal dropouts particularly in the basal regions of the temporal lobes and in the cerebellum. RESULTS Significant improvements in image uniformity were obtained using dielectric pads in the knee and brain. A combination of small voxels, reduced field of view B0 shimming, and high in-plane parallel imaging factors helped to minimize signal loss in areas of high susceptibility-induced field distortions. The high inherent signal-to-noise ratio at 7 T allowed for high receiver bandwidths and thin slices to minimize chemical shift artifacts. Intermittent artifacts due to radiofrequency inversion pulse limitations (power, bandwidth) were minimized with dielectric pads. A patient with 2 implanted metallic cranial fixation devices located within the radiofrequency transmit field was successfully imaged, with minimal image geometric distortions. CONCLUSIONS Challenges relating to severe image artifacts at 7 T using single-channel radiofrequency transmit functionality in the knee and brain were overcome using the approaches described in this article. The resultant high diagnostic image quality paves the way for incorporation of this technology into the routine clinical workflow. Further developmental efforts are required to expand the range of applications to other anatomical areas, and to expand the evidence- and knowledge-base relating to the safety of scanning patients with implanted metallic devices.
Collapse
|
15
|
Treutlein C, Bäuerle T, Nagel AM, Guermazi A, Kleyer A, Simon D, Schett G, Hepp T, Uder M, Roemer FW. Comprehensive assessment of knee joint synovitis at 7 T MRI using contrast-enhanced and non-enhanced sequences. BMC Musculoskelet Disord 2020; 21:116. [PMID: 32085776 PMCID: PMC7035667 DOI: 10.1186/s12891-020-3122-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Seven T ultra-high field MRI systems have recently been approved for clinical use by the U.S. and European regulatory agencies. These systems are now being used clinically and will likely be more widely available in the near future. One of the applications of 7 T systems is musculoskeletal disease and particularly peripheral arthritis imaging. Since the introduction of potent anti-rheumatic therapies over the last two decades MRI has gained increasing importance particularly for assessment of disease activity in early stages of several rheumatic disorders. Commonly gadolinium-based contrast agents are used for assessment of synovitis. Due to potential side-effects of gadolinium non-enhanced techniques are desirable that enable visualization of inflammatory disease manifestations. The feasibility of 7 T MRI for evaluation of peripheral arthritis has not been shown up to now. Aim of our study was to evaluate the feasibility of contrast-enhanced (CE) and non-enhanced MRI at 7 T for the assessment of knee joint synovitis. Method Seven T MRI was acquired for 10 patients with an established diagnosis of psoriatic or rheumatoid arthritis. The study pulse sequence protocol was comprised of a sagittal intermediate-weighted fat-suppressed (FS), axial fluid-attenuated inversion recovery (FLAIR) FS, sagittal 3D T1-weighted dynamic contrast enhanced (DCE) and an axial static 2D T1-weighted FS contrast-enhanced sequence (T1-FS CE). Ordinal scoring on non-enhanced (Hoffa- and effusion-synovitis) and enhanced MRI (11-point synovitis score), and comparison of FLAIR-FS with static T1-FS CE MRI using semiquantitative (SQ) grading and volume assessment was performed. For inter- and intra-reader reliability assessment weighted kappa statistics for ordinal scores and intraclass correlation coefficients (ICC) for continuous variables were used. Results The total length of study protocol was 15 min 38 s. Different amounts of synovitis were observed in all patients (mild: n = 3; moderate: n = 5; severe: n = 2). Consistently, SQ assessment yielded significantly lower peripatellar summed synovitis scores for the FLAIR-FS sequence compared to the CE T1-FS sequence (p < 0.01). FLAIR-FS showed significantly lower peripatellar synovial volumes (p < 0.01) compared to CE T1-FS imaging with an average percentage difference of 18.6 ± 9.5%. Inter- and intra-reader reliability for ordinal SQ scoring ranged from 0.21 (inter-reader Hoffa-synovitis) to 1.00 (inter-reader effusion-synovitis). Inter- and intra-observer reliability of SQ 3D-DCE parameters ranged from 0.86 to 0.99. Conclusions Seven T FLAIR-FS ultra-high field MRI is a potential non-enhanced imaging method able to visualize synovial inflammation with high conspicuity and holds promise for further application in research endeavors and clinical routine by trained readers.
Collapse
Affiliation(s)
- Christoph Treutlein
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany.,Institute of Medical Physics, University of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ali Guermazi
- Quantitative Imaging Center (QIC), Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA, 02118, USA.,Department of Radiology, Veterans Affairs Boston Healthcare System, 1400 VFW Parkway, Suite 1B105, Boston, MA, 02132, USA
| | - Arnd Kleyer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - David Simon
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Tobias Hepp
- Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University of Erlangen-Nuremberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Frank W Roemer
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany. .,Quantitative Imaging Center (QIC), Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA, 02118, USA.
| |
Collapse
|
16
|
Abstract
BACKGROUND It can be expected that the number of 7 T MRI systems for clinical use will increase in the future. On the other hand, almost no medical implant has been labeled MR conditional for 7 T, so far, leaving the question of implant safety unanswered to the MR operator. METHODS In principle, the same interactions between magnetizable and electric conductive material apply at 7 T as known at lower magnetic field strengths. However, there are a few important differences that need to be taken into account to perform a profound risk-benefit analysis. After a more general introduction of technical differences between 3 and 7 T systems, the article will focus mainly on safety assessments with regard to interactions between implant and radiofrequency (RF) transmit fields. In addition, strategies to ensure access at 7 T will be discussed. RESULTS OF PRACTICAL RELEVANCE Besides hazards due to the magnetic force which can be up to 2.3 times stronger at 7 T compared to 3 T, increased risks of RF-induced tissue heating are the most critical aspects. The resonant-length of an implant at 7 T is about 5 cm. Other than at 3 T, MR systems at 7 T are less standardized. Especially with regard to the RF transmit coil and transmission methods used, substantial differences need to be expected. Hence, it is important to critically question published safety assessments of implants and to have a thorough discussion about how this relates to the individual exposure scenario. For nonmagnetic implants without a dedicated 7 T safety evaluation, but which are 3 T MR conditional and have a certain minimum distance to the RF transmit coil, a consensus recommendation from the national network German Ultrahigh Field Imaging (GUFI) may be helpful.
Collapse
Affiliation(s)
- O Kraff
- Erwin L. Hahn Institute for MR Imaging, Universität Duisburg-Essen, Kokereiallee 7, 45141, Essen, Deutschland.
| | - H H Quick
- Erwin L. Hahn Institute for MR Imaging, Universität Duisburg-Essen, Kokereiallee 7, 45141, Essen, Deutschland.,Hochfeld- und Hybride MR-Bildgebung, Universitätsklinikum Essen, Essen, Deutschland
| |
Collapse
|
17
|
Yao A, Zastrow E, Cabot E, Lloyd B, Schneider B, Kainz W, Kuster N. Anatomical Model Uncertainty for RF Safety Evaluation of Metallic Implants Under MRI Exposure. Bioelectromagnetics 2019; 40:458-471. [PMID: 31396987 DOI: 10.1002/bem.22206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/18/2019] [Indexed: 11/11/2022]
Abstract
The Virtual Population (ViP) phantoms have been used in many dosimetry studies, yet, to date, anatomical phantom uncertainty in radiofrequency (RF) research has largely been neglected. The objective of this study is to gain insight, for the first time, regarding the uncertainty in RF-induced fields during magnetic resonance imaging associated with tissue assignment and segmentation quality and consistency in anatomical phantoms by evaluating the differences between two generations of ViP phantoms, ViP1.x and ViP3.0. The RF-induced 10g-average electric (E-) fields, tangential E-fields distribution along active implantable medical devices (AIMD) routings, and estimated AIMD heating were compared for five phantoms that are part of both ViP1.x and ViP3.0. The results demonstrated that differences exceeded 3 dB (-29%, +41%) for local quantities and 1 dB (±12% for field, ±25% for power) for integrated and volume-averaged quantities (e.g., estimated AIMD-heating and 10 g-average E-fields), while the variation across different ViP phantoms of the same generation can exceed 10 dB (-68% and +217% for field, -90% and +900% for power). In conclusion, the anatomical phantom uncertainty associated with tissue assignment and segmentation quality/consistency is larger than previously assumed, i.e., 0.6 dB or ±15% (k = 1) for AIMD heating. Further, multiple phantoms based on different volunteers covering the target population are required for quantitative analysis of dosimetric endpoints, e.g., AIMD heating, which depend on patient anatomy. Phantoms with the highest fidelity in tissue assignment and segmentation should be used, as these ensure the lowest uncertainty and possible underestimation of exposure. To verify that the uncertainty decreases monotonically with improved phantom quality, the evaluation of differences between phantom generations should be repeated for any improvement in segmentation. Bioelectromagnetics. 2019;40:458-471. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aiping Yao
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Earl Zastrow
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Eugenia Cabot
- Federal Office of Communications (OFCOM), Biel, Switzerland
| | - Bryn Lloyd
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | | | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Hoff MN, McKinney A, Shellock FG, Rassner U, Gilk T, Watson RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology 2019; 292:509-518. [PMID: 31310177 DOI: 10.1148/radiol.2019182742] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although 7-T MRI has recently received approval for use in clinical patient care, there are distinct safety issues associated with this relatively high magnetic field. Forces on metallic implants and radiofrequency power deposition and heating are safety considerations at 7 T. Patient bioeffects such as vertigo, dizziness, false feelings of motion, nausea, nystagmus, magnetophosphenes, and electrogustatory effects are more common and potentially more pronounced at 7 T than at lower field strengths. Herein the authors review safety issues associated with 7-T MRI. The rationale for safety concerns at this field strength are discussed as well as potential approaches to mitigate risk to patients and health care professionals.
Collapse
Affiliation(s)
- Michael N Hoff
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Alexander McKinney
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Frank G Shellock
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Ulrich Rassner
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Tobias Gilk
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Robert E Watson
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Todd D Greenberg
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Jerry Froelich
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Emanuel Kanal
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| |
Collapse
|
19
|
Noureddine Y, Kraff O, Ladd ME, Wrede K, Chen B, Quick HH, Schaefers G, Bitz AK. Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips. Magn Reson Med 2019; 82:1859-1875. [DOI: 10.1002/mrm.27835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yacine Noureddine
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- MR:comp GmbH, MR Safety Testing Laboratory Gelsenkirchen Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy and Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Karsten Wrede
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Department of Neurosurgery University Hospital Essen Essen Germany
| | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- Department of Neurosurgery University Hospital Essen Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg‐Essen Essen Germany
- High Field and Hybrid MR, University Hospital Essen Essen Germany
| | - Gregor Schaefers
- MR:comp GmbH, MR Safety Testing Laboratory Gelsenkirchen Germany
- MRI‐STaR – Magnetic Resonance Institute for Safety, Technology and Research GmbH Gelsenkirchen Germany
| | - Andreas K. Bitz
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology FH Aachen University of Applied Sciences Aachen NRW Germany
| |
Collapse
|
20
|
Abstract
Radiofrequency (RF) coils are an essential part of the magnetic resonance (MR) system. To exploit the inherently higher signal-to-noise ratio at ultrahigh magnetic fields (UHF), research sites were forced to build up expertise in RF coil development, as the number of commercially available RF coils were limited. In addition, an integrated transmit body RF coil, which is well-established at MR systems of lower field strength, is still missing at UHF due to technical and physical constraints. This review article provides a brief recapitulation of RF characteristics and RF coils in general to introduce terminology and RF-related parameters, and will then provide an extensive overview of current state-of-the-art RF coils used for MRI from head to toe at 7 Tesla. Finally, a section on RF safety will briefly discuss challenges in performing a safety assessment for custom-designed RF coils, and issues arising from the interaction of the RF field and potentially implanted medical devices.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
21
|
Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R. High Field Cardiac Magnetic Resonance Imaging: A Case for Ultrahigh Field Cardiac Magnetic Resonance. Circ Cardiovasc Imaging 2019; 10:CIRCIMAGING.116.005460. [PMID: 28611118 DOI: 10.1161/circimaging.116.005460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Thoralf Niendorf
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.).
| | - Jeanette Schulz-Menger
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Katharina Paul
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Till Huelnhagen
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Victor A Ferrari
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Russell Hodge
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| |
Collapse
|
22
|
Kluger N, Brun-Lévêque P, Gral N. Painful burning sensation on a tattoo during magnetic resonance imaging. Int J Dermatol 2019; 58:E82-E83. [DOI: 10.1111/ijd.14403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/28/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Nicolas Kluger
- Department of Skin and Allergic Diseases; Helsinki University Central Hospital; Helsinki Finland
- «Tattoo» Consultation; Department of Dermatology; Bichat-Claude Bernard Hospital; Assistance Publique-Hôpitaux de Paris; Paris France
| | | | | |
Collapse
|
23
|
Hayakawa A, Sano R, Takei H, Takahashi Y, Kubo R, Tokue H, Hirasawa S, Shimada T, Awata S, Yuasa M, Uetake S, Akuzawa H, Kominato Y. Tattoo image composed of radiopaque deposits demonstrated by postmortem computed tomography. Leg Med (Tokyo) 2018; 35:9-11. [PMID: 30227264 DOI: 10.1016/j.legalmed.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/14/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
Abstract
Postmortem computed tomography (PMCT) is becoming used more commonly in routine forensic investigation. CT is sensitive for detection of metal foreign bodies. Here we report a case of suicide due to self-ignition of kerosene that the victim had poured over herself. Prior to autopsy, PMCT detected tiny radiopaque particles arranged in a row in the surface of the back and either thigh, together with a series of similar particles under the skin lateral to the breasts or the bilateral inguinal region. At autopsy, external examination revealed third-degree burns involving charred tissues all over the body except for the head. Tattoos were visible on the back and on either thigh. The tattoos had colored designs, and the red portions corresponded to the radiopaque particles in the surface of the body. Internal examination demonstrated swelling of the axillary and inguinal lymph nodes, which corresponded to the radiopaque particles. A wave length-dispersive X-ray spectroscopy revealed deposition of mercury and titanium in the inguinal lymph nodes. Thus, it was plausible that the ink could have contributed to the radiopaque particles found by PMCT in the surface of the back and thighs, as well in the lymph nodes. The present case was able to provide clues for interpretation of radiopaque particles revealed by PMCT in the surface of the body.
Collapse
Affiliation(s)
- Akira Hayakawa
- Department of Legal Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan.
| | - Hiroyuki Takei
- Department of Radiology, Gunma University Hospital, Maebashi 371-8511, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan; Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore MD21205, USA
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroyuki Tokue
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Satoshi Hirasawa
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takehiro Shimada
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Sachiko Awata
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masahiro Yuasa
- Forensic Science Laboratory of Gunma Prefectural Police Headquarter, Maebashi 371-8580, Japan
| | - Shinji Uetake
- Forensic Science Laboratory of Gunma Prefectural Police Headquarter, Maebashi 371-8580, Japan
| | - Hisashi Akuzawa
- Forensic Science Laboratory of Gunma Prefectural Police Headquarter, Maebashi 371-8580, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
24
|
Yilmaz S, Adisen MZ. Ex Vivo Mercury Release from Dental Amalgam after 7.0-T and 1.5-T MRI. Radiology 2018; 288:799-803. [DOI: 10.1148/radiol.2018172597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Selmi Yilmaz
- From the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, P.K. 10 Dumlupinar Bulvari Kampus, 07058 Konyaalti/Antalya, Turkey (S.Y.); and Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey (M.Z.A.)
| | - M. Zahit Adisen
- From the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, P.K. 10 Dumlupinar Bulvari Kampus, 07058 Konyaalti/Antalya, Turkey (S.Y.); and Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey (M.Z.A.)
| |
Collapse
|
25
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
26
|
Noureddine Y, Kraff O, Ladd ME, Wrede KH, Chen B, Quick HH, Schaefers G, Bitz AK. In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla. Magn Reson Med 2017; 79:568-581. [DOI: 10.1002/mrm.26650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yacine Noureddine
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- MR:comp GmbH, MR Safety Testing Laboratory; Gelsenkirchen Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Division of Medical Physics in Radiology (E020); German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Karsten H. Wrede
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Department of Neurosurgery; University Hospital Essen; Essen Germany
| | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Department of Neurosurgery; University Hospital Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| | - Gregor Schaefers
- MR:comp GmbH, MR Safety Testing Laboratory; Gelsenkirchen Germany
- MRI-STaR-Magnetic Resonance Institute for Safety, Technology and Research GmbH; Gelsenkirchen Germany
| | - Andreas K. Bitz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Division of Medical Physics in Radiology (E020); German Cancer Research Center (DKFZ); Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology; FH Aachen-University of Applied Sciences; Aachen NRW Germany
| |
Collapse
|
27
|
Nagy Z, Oliver-Taylor A, Kuehne A, Goluch S, Weiskopf N. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil. Front Neurosci 2017; 11:15. [PMID: 28184184 PMCID: PMC5266708 DOI: 10.3389/fnins.2017.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022] Open
Abstract
The transmit-receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.
Collapse
Affiliation(s)
- Zoltan Nagy
- Laboratory for Social and Neural Systems Research, University of ZürichZürich, Switzerland
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
| | - Aaron Oliver-Taylor
- Department of Neonatology, Institute for Women's Health, University College LondonLondon, UK
| | - Andre Kuehne
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
- MR Center of Excellence, Medical University of ViennaVienna, Austria
| | - Sigrun Goluch
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
- MR Center of Excellence, Medical University of ViennaVienna, Austria
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| |
Collapse
|
28
|
|