1
|
Heerfordt J, Whitehead KK, Bastiaansen JAM, Di Sopra L, Roy CW, Yerly J, Milani B, Fogel MA, Stuber M, Piccini D. Similarity-driven multi-dimensional binning algorithm (SIMBA) for free-running motion-suppressed whole-heart MRA. Magn Reson Med 2021; 86:213-229. [PMID: 33624348 DOI: 10.1002/mrm.28713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Whole-heart MRA techniques typically target predetermined motion states, address cardiac and respiratory dynamics independently, and require either complex planning or computationally demanding reconstructions. In contrast, we developed a fast data-driven reconstruction algorithm with minimal physiological assumptions and compatibility with ungated free-running sequences. THEORY AND METHODS We propose a similarity-driven multi-dimensional binning algorithm (SIMBA) that clusters continuously acquired k-space data to find a motion-consistent subset for whole-heart MRA reconstruction. Free-running 3D radial data sets from 12 non-contrast-enhanced scans of healthy volunteers and six ferumoxytol-enhanced scans of pediatric cardiac patients were reconstructed with non-motion-suppressed regridding of all the acquired data ("All Data"), with SIMBA, and with a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium sharpness and contrast ratio, visibility of coronary artery ostia, and right coronary artery sharpness. RESULTS Both the 20-second SIMBA reconstruction and FRF provided significantly higher blood-myocardium sharpness than All Data in both patients and volunteers (P < .05). The SIMBA reconstruction provided significantly sharper blood-myocardium interfaces than FRF in volunteers (P < .001) and higher blood-myocardium contrast ratio than All Data and FRF, both in volunteers and patients (P < .05). Significantly more ostia could be visualized with both SIMBA (31 of 36) and FRF (34 of 36) than with All Data (4 of 36) (P < .001). Inferior right coronary artery sharpness using SIMBA versus FRF was observed (volunteers: SIMBA 36.1 ± 8.1%, FRF 40.4 ± 8.9%; patients: SIMBA 35.9 ± 7.7%, FRF 40.3 ± 6.1%, P = not significant). CONCLUSION The SIMBA technique enabled a fast, data-driven reconstruction of free-running whole-heart MRA with image quality superior to All Data and similar to the more time-consuming FRF reconstruction.
Collapse
Affiliation(s)
- John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Kevin K Whitehead
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessica A M Bastiaansen
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Bastien Milani
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mark A Fogel
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|
2
|
Heerfordt J, Stuber M, Maillot A, Bianchi V, Piccini D. A quantitative comparison between a navigated Cartesian and a self-navigated radial protocol from clinical studies for free-breathing 3D whole-heart bSSFP coronary MRA. Magn Reson Med 2019; 84:157-169. [PMID: 31815322 DOI: 10.1002/mrm.28101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Navigator-gated 3D bSSFP whole-heart coronary MRA has been evaluated in several large studies including a multi-center trial. Patient studies have also been performed with more recent self-navigated techniques. In this study, these two approaches are compared side-by-side using a Cartesian navigator-gated and corrected (CNG) and a 3D radial self-navigated (RSN) protocol from published patient studies. METHODS Sixteen healthy subjects were examined with both sequences on a 1.5T scanner. Assessment of the visibility of coronary ostia and quantitative comparisons of acquisition times, blood pool homogeneity, and visible length and sharpness of the right coronary artery (RCA) and the combined left main (LM)+left anterior descending (LAD) coronary arteries were performed. Paired sample t-tests with P < .05 considered statistically significant were used for all comparisons. RESULTS The acquisition time was 5:40 ± 0:28 min (mean ± SD) for RSN, being significantly shorter than the 16:59 ± 5:05 min of CNG (P < .001). RSN images showed higher blood pool homogeneity (P < .001). All coronary ostia were visible with both techniques. CNG provided significantly higher vessel sharpness in the RCA (CNG: 50.0 ± 8.6%, RSN: 34.2 ± 6.9%, P < .001) and the LM+LAD (CNG: 48.7 ± 6.7%, RSN: 32.3 ± 7.1%, P < .001). The visible vessel length was significantly longer in the LM+LAD using CNG (CNG: 9.8 ± 2.7 cm, RSN: 8.5 ± 2.6 cm, P < .05) but not in the RCA (CNG: 9.7 ± 2.3 cm, RSN: 9.3 ± 2.9 cm, P = .29). CONCLUSION CNG provided superior vessel sharpness and might hence be the better option for examining coronary lumina. However, its blood pool inhomogeneity and prolonged and unpredictable acquisition times compared to RSN may make clinical adoption more challenging.
Collapse
Affiliation(s)
- John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Aurélien Maillot
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Veronica Bianchi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|