1
|
Bhalla D, Jana M, Kandasamy D. Diagnostic accuracy of whole-body magnetic resonance imaging versus positron emission tomography-computed tomography for the staging of pediatric lymphoma: a systematic review and meta-analysis. Pediatr Radiol 2023; 53:2683-2691. [PMID: 37814104 DOI: 10.1007/s00247-023-05775-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Whole-body magnetic resonance imaging (MRI) has been investigated by multiple authors as a radiation-free alternative to positron emission tomography computed tomography (PET-CT) in children with lymphoma. OBJECTIVE To evaluate the sensitivity, specificity, and diagnostic odds ratio of whole-body MRI compared to PET-CT for the staging of pediatric lymphoma. METHODS The databases PubMed, Embase, and Scopus were searched for studies that reported the accuracy of whole-body MRI compared to PET-CT for lymphoma staging in children. Data was collected from included studies to formulate 2 × 2 contingency tables, including the number of true positive, true negative, false positive, and false negative. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated. Summary receiver operating characteristic curves were drawn and the area under the curve (AUC) calculated. In addition, the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2) tool was used to assess the risk of bias and applicability concerns. RESULTS A total of seven studies were included in the final analysis. Of these, six studies used unenhanced whole-body MRI. The pooled sensitivity of whole-body MRI-based staging was 95.8%, while the pooled specificity was 21.8%. The DOR for whole-body MRI was 1.19. For extranodal staging, the pooled sensitivity was 88.9%, specificity was 97.4%, and DOR was 25.29. The partial AUC for overall staging was 0.63, whereas that for extranodal staging stood at 0.88. Based on the QUADAS 2 tool, all seven studies were at risk of bias (six at high risk, one at unclear risk). CONCLUSION Whole-body MRI has high sensitivity for staging of pediatric lymphoma and may be a useful alternative to PET-CT.
Collapse
Affiliation(s)
- Deeksha Bhalla
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Manisha Jana
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Devasenathipathy Kandasamy
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
2
|
Di Giuliano F, Picchi E, Pucci N, Minosse S, Ferrazzoli V, Pizzicannella G, Angeloni C, Nasso D, Chiaravalloti A, Garaci F, Floris R. Comparison between diffusion-weighted magnetic resonance and positron-emission tomography in the evaluation of treated lymphomas with mediastinal involvement. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The persistence of residual tissue after treatment is frequent in patients with mediastinal lymphomas and it is often characterized by 18F-Flurodeoxyglucose Positron Emission Tomography (18F-FDG PET) uptake. This study aims to investigate the usefulness of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) sequence in residual tissues of treated mediastinal lymphomas and to compare it with 18F-FDG PET-CT.
Results
We included 21 patients with mediastinal Hodgkin and non-Hodgkin lymphomas who showed residual masses on PET-CT imaging at end of treatment and underwent DWIBS-Magnetic Resonance Imaging (MRI). SUVmax and Apparent Diffusion Coefficient (ADC) values of residual masses were assessed quantitatively, including measurement of mean ADC. 15 patients showed radiotracer uptake at 18F-FDG PET-CT, among them only 3 had positive DWIBS-MRI with low ADC values (median value: 0.90 mm2/s). The mediastinal biopsy in these 3 “double positive” patients confirmed pathological residual tissue. All the patients with positive 18F-FDG PET-CT but negative DWIBS-MRI (n = 18) with high ADC values (median value: 2.05 mm2/s) were confirmed negative by biopsy.
Conclusions
DWIBS-MRI examination combined with ADC measurement allowed to discriminate pathological and non-pathological residual tissue in patients with treated mediastinal lymphoma. These preliminary results seem to pave the way for a leading role of the MRI which could be a useful alternative to the 18F-FDG PET/CT.
Collapse
|
3
|
Chaturvedi A. Pediatric skeletal diffusion-weighted magnetic resonance imaging, part 2: current and emerging applications. Pediatr Radiol 2021; 51:1575-1588. [PMID: 34018037 DOI: 10.1007/s00247-021-05028-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023]
Abstract
Diffusion-weighted imaging (DWI) complements the more established T1, fluid-sensitive and gadolinium-enhanced magnetic resonance pulse sequences used to assess several pediatric skeletal pathologies. There is optimism that the technique might not just be complementary but could serve as an alternative to gadolinium and radiopharmaceuticals for several indications. As a non-contrast, free-breathing and noninvasive technique, DWI is especially valuable in children and is readily incorporated into existing MRI protocols. The indications for skeletal DWI in children include distinguishing between benign and malignant skeletal processes, initial assessment and treatment response assessment for osseous sarcomas, and assessment of inflammatory arthropathies and femoral head ischemia, among others. A notable challenge of diffusion MRI is the dynamic nature of the growing pediatric skeleton. It is important to consider the child's age when placing DWI findings in context with potential marrow pathology. This review article summarizes the current and evolving applications of DWI for assessing the pediatric skeleton, rounding off the discussion with evolving directions for further research in this realm.
Collapse
Affiliation(s)
- Apeksha Chaturvedi
- Division of Pediatric Radiology, Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
| |
Collapse
|
4
|
Chaturvedi A. Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 - technical considerations and optimization strategies. Pediatr Radiol 2021; 51:1562-1574. [PMID: 33792751 DOI: 10.1007/s00247-021-04975-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
Diffusion-weighted MRI, or DWI, is a fast, quantitative technique that is easily integrated into a morphological MR acquisition. The ability of DWI to aid in detecting multifocal skeletal pathology and in characterizing tissue cellularity to a level beyond that possible with other techniques makes it a niche component of multiparametric MR imaging of the skeleton. Besides its role in disease detection and establishing cellularity and character of osseous lesions, DWI continues to be examined as a surrogate biomarker for therapeutic response of several childhood bone tumors. There is increasing interest in harnessing DWI as a potential substitute to alternative modes of imaging evaluation that involve radiation or administration of intravenous contrast agent or radiopharmaceuticals, for example in early detection and diagnosis of capital femoral epiphyseal ischemia in cases of Legg-Calvé-Perthes disease, or diagnosis and staging of lymphoma. The expected evolution of skeletal diffusivity characteristics with maturation and the unique disease processes that affect the pediatric skeleton necessitate a pediatric-specific discussion. In this article, the author examines the developmentally appropriate normal appearances, technique, artifacts and pitfalls of pediatric skeletal DWI.
Collapse
Affiliation(s)
- Apeksha Chaturvedi
- Division of Pediatric Radiology, Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Seravalli E, Kroon PS, Buatti JM, Hall MD, Mandeville HC, Marcus KJ, Onal C, Ozyar E, Paulino AC, Paulsen F, Saunders D, Tsang DS, Wolden SL, Janssens GO. The potential role of MR-guided adaptive radiotherapy in pediatric oncology: Results from a SIOPE-COG survey. Clin Transl Radiat Oncol 2021; 29:71-78. [PMID: 34159265 PMCID: PMC8202186 DOI: 10.1016/j.ctro.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance guided radiotherapy (MRgRT) has been successfully implemented for several routine clinical applications in adult patients. The purpose of this study is to map the potential benefit of MRgRT on toxicity reduction and outcome in pediatric patients treated with curative intent for primary and metastatic sites. MATERIALS AND METHODS Between May and August 2020, a survey was distributed among SIOPE- and COG-affiliated radiotherapy departments, treating at least 25 pediatrics patients annually and being (candidate) users of a MRgRT system. The survey consisted of a table with 45 rows (clinical scenarios for primary (n = 28) and metastatic (n = 17) tumors) and 7 columns (toxicity reduction, outcome improvement, PTV margin reduction, target volume daily adaptation, online re-planning, intrafraction motion compensation and on-board functional imaging) and the option to answer by 'yes/no' . Afterwards, the Dutch national radiotherapy cohort was used to estimate the percentage of pediatric treatments that may benefit from MRgRT. RESULTS The survey was completed by 12/17 (71% response rate) institutions meeting the survey inclusion criteria. Responders indicated an 'expected benefit' from MRgRT for toxicity/outcome in 7% (for thoracic lymphomas and abdominal rhabdomyosarcomas)/0% and 18% (for mediastinal lymph nodes, lymph nodes located in the liver/splenic hilum, and liver metastases)/0% of the considered scenarios for the primary and metastatic tumor sites, respectively, and a 'possible benefit' was estimated in 64%/46% and 47%/59% of the scenarios. When translating the survey outcome into a clinical perspective a toxicity/outcome benefit, either expected or possible, was anticipated for 55%/24% of primary sites and 62%/38% of the metastatic sites. CONCLUSION Although the benefit of MRgRT in pediatric radiation oncology is estimated to be modest, the potential role for reducing toxicity and improving clinical outcomes warrants further investigation. This fits best within the context of prospective studies or registration trials.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra S. Kroon
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John M. Buatti
- Departments of Radiation Oncology, University of Iowa, Iowa City, USA
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Henry C. Mandeville
- Department of Radiotherapy, The Royal Marsden Hospital and Institute of Cancer Research, Sutton, United Kingdom
| | - Karen J. Marcus
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Cem Onal
- Department of Radiation Oncology, Baskent University, Ankara, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Arnold C. Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Derek S. Tsang
- Radiation Medicine Program, University Health Network – Princess Margaret Cancer Centre, Toronto, Canada
| | - Suzanne L. Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Geert O. Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
6
|
Usuda K, Iwai S, Yamagata A, Iijima Y, Motono N, Matoba M, Doai M, Yamada S, Ueda Y, Hirata K, Uramoto H. Diffusion-weighted whole-body imaging with background suppression (DWIBS) is effective and economical for detection of metastasis or recurrence of lung cancer. Thorac Cancer 2021; 12:676-684. [PMID: 33476488 PMCID: PMC7919163 DOI: 10.1111/1759-7714.13820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diffusion-weighted whole-body imaging with background suppression (DWIBS) is used for the diagnosis and staging of cancers. The medical cost of an MR examination including DWIBS is $123, which is 80% less expensive than the cost ($798) of F18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) examination. METHODS This study examined the efficacy of DWIBS for relapses after lung cancer resection. A total of 55 patients who had pulmonary resection of lung cancer, postoperative computed tomography (CT) every six months, and DWIBS and FDG-PET/CT (every year) were enrolled in this study. If a metastatic lesion was detected on CT scan, DWIBS and FDG-PET/CT were also used. RESULTS A total of 55 patients who underwent pulmonary resections for lung cancer, and had CT, DWIBS and FDG-PET/CT examination during follow-up after pulmonary resection were enrolled in this study. Lung cancer in 32 patients relapsed. Postoperative radiographic examinations revealed pulmonary metastases in 17 patients, bone metastases in seven, liver metastases in five, lymph node metastases in five, pleural metastases in four, metastases to the chest wall in two, brain metastases in two, adrenal gland metastasis in one, and renal metastasis in one. The mean apparent diffusion coefficient (ADC) value of the relapse was 0.9 to 1.70 × 10-3 mm2 /s. The accuracy 0.98 (54/55) of DWIBS for detecting multiple metastatic lesions was likely to be higher than 0.94 (52/55) of CT or 0.94 (52/55) of FDG-PET/CT, but there were no significant differences. CONCLUSIONS DWIBS can detect multiple metastatic lesions throughout the entire body and differentiate malignancy from benignity in only one examination. DWIBS has benefits of diagnostic accuracy and is less expensive in medical costs for the detection of a relapse. DWIBS could potentially replace FDG-PET/CT after lung cancer resection.
Collapse
Affiliation(s)
- Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Aika Yamagata
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Munetaka Matoba
- Department of Radiology, Kanazawa Medical University, Kahoku-gun, Japan
| | - Mariko Doai
- Department of Radiology, Kanazawa Medical University, Kahoku-gun, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Yoshimichi Ueda
- Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University, Kahoku-gun, Japan
| | - Keiya Hirata
- MRI Center, Kanazawa Medical University, Kahoku-gun, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
7
|
Spijkers S, Littooij AS, Kwee TC, Tolboom N, Beishuizen A, Bruin MCA, Elias SG, van de Brug T, Enríquez G, Sábado C, Miller E, Granata C, de Lange C, Verzegnassi F, Greer MLC, de Keizer B, Nievelstein RAJ. Whole-body MRI versus an FDG-PET/CT-based reference standard for staging of paediatric Hodgkin lymphoma: a prospective multicentre study. Eur Radiol 2020; 31:1494-1504. [PMID: 32880696 PMCID: PMC7880958 DOI: 10.1007/s00330-020-07182-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Objectives To assess the concordance of whole-body MRI (WB-MRI) and an FDG-PET/CT-based reference standard for the initial staging in children with Hodgkin lymphoma (HL) Methods Children with newly diagnosed HL were included in this prospective, multicentre, international study and underwent WB-MRI and FDG-PET/CT at staging. Two radiologists and a nuclear medicine physician independently evaluated all images. Discrepancies between WB-MRI and FDG-PET/CT were assessed by an expert panel. All FDG-PET/CT errors were corrected to derive the FDG-PET/CT-based reference standard. The expert panel corrected all reader errors in the WB-MRI DWI dataset to form the intrinsic MRI data. Inter-observer agreement for WB-MRI DWI was calculated using overall agreement, specific agreements and kappa statistics. Concordance for correct classification of all disease sites and disease stage between WB-MRI (without DWI, with DWI and intrinsic WB-MRI DWI) and the reference standard was calculated as primary outcome. Secondary outcomes included positive predictive value, negative predictive value and kappa statistics. Clustering within patients was accounted for using a mixed-effect logistic regression model with random intercepts and a multilevel kappa analysis. Results Sixty-eight children were included. Inter-observer agreement between WB-MRI DWI readers was good for disease stage (κ = 0.74). WB-MRI DWI agreed with the FDG-PET/CT-based reference standard for determining disease stage in 96% of the patients versus 88% for WB-MRI without DWI. Agreement between WB-MRI DWI and the reference standard was excellent for both nodal (98%) and extra-nodal (100%) staging. Conclusions WB-MRI DWI showed excellent agreement with the FDG-PET/CT-based reference standard. The addition of DWI to the WB-MRI protocol improved the staging agreement. Key Points • This study showed excellent agreement between WB-MRI DWI and an FDG-PET/CT-based reference standard for staging paediatric HL. • Diffusion-weighted imaging is a useful addition to WB-MRI in staging paediatric HL. • Inter-observer agreement for WB-MRI DWI was good for both nodal and extra-nodal staging and determining disease stage. Electronic supplementary material The online version of this article (10.1007/s00330-020-07182-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne Spijkers
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Annemieke S Littooij
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Auke Beishuizen
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands.,Department of Paediatric Oncology/Haematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marrie C A Bruin
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tim van de Brug
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, VUmc, Amsterdam, The Netherlands
| | | | - Constantino Sábado
- Department of Paediatric Oncology and Haematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Elka Miller
- Department of Medical Imaging, CHEO, University of Ottawa, Ottawa, Canada
| | - Claudio Granata
- Department of Paediatric Radiology, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Charlotte de Lange
- Department of Diagnostic Imaging and Intervention, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Federico Verzegnassi
- Oncohematology Unit, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Bart de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Rutger A J Nievelstein
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
8
|
Mayerhoefer ME, Archibald SJ, Messiou C, Staudenherz A, Berzaczy D, Schöder H. MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging 2019; 51:1325-1335. [PMID: 31260155 PMCID: PMC7217155 DOI: 10.1002/jmri.26848] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The role of MRI differs considerably between the three main groups of hematological malignancies: lymphoma, leukemia, and myeloma. In myeloma, whole‐body MRI (WB‐MRI) is recognized as a highly sensitive test for the assessment of myeloma, and is also endorsed by clinical guidelines, especially for detection and staging. In lymphoma, WB‐MRI is presently not recommended, and merely serves as an alternative technique to the current standard imaging test, [18F]FDG‐PET/CT, especially in pediatric patients. Even for lymphomas with variable FDG avidity, such as extranodal mucosa‐associated lymphoid tissue lymphoma (MALT), contrast‐enhanced computed tomography (CT), but not WB‐MRI, is presently recommended, despite the high sensitivity of diffusion‐weighted MRI and its ability to capture treatment response that has been reported in the literature. In leukemia, neither MRI nor any other cross‐sectional imaging test (including positron emission tomography [PET]) is currently recommended outside of clinical trials. This review article discusses current clinical applications as well as the main research topics for MRI, as well as PET/MRI, in the field of hematological malignancies, with a focus on functional MRI techniques such as diffusion‐weighted imaging and dynamic contrast‐enhanced MRI, on the one hand, and novel, non‐FDG PET imaging probes such as the CXCR4 radiotracer [68Ga]Ga‐Pentixafor and the amino acid radiotracer [11C]methionine, on the other hand. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1325–1335.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria.,Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | | | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Anton Staudenherz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dominik Berzaczy
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| |
Collapse
|