1
|
Wu W, Ding Y, Su Y, Wang Y, Liu T, Liu D, Li C, Zheng C, Wang L, Long X. Contrast-enhanced magnetic resonance neurography for diagnosing brachial plexopathy: improved visualization and additional imaging features. Sci Rep 2024; 14:20758. [PMID: 39237747 PMCID: PMC11377534 DOI: 10.1038/s41598-024-71554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Contrast-enhanced magnetic resonance neurography (CE-MRN) holds promise for diagnosing brachial plexopathy by enhancing nerve visualization and revealing additional imaging features in various lesions. This study aims to validate CE-MRN's efficacy in improving brachial plexus (BP) imaging across different patient cohorts. Seventy-one subjects, including 19 volunteers and 52 patients with BP compression/entrapment, injury, and neoplasms, underwent both CE-MRN and plain MRN. Two radiologists assessed nerve visibility, with inter-reader agreement evaluated. Quantitative parameters such as signal intensity (SI), contrast-to-noise ratio (CNR), and contrast ratio (CR) of the C7 nerve were measured. Both qualitative scoring and quantitative metrics were compared between CE-MRN and plain MRN within each patient group. Patient classification followed the Neuropathy Score Reporting and Data System (NS-RADS), summarizing additional imaging features for each brachial plexopathy type. Inter-reader agreement for qualitative assessment was strong. CE-MRN significantly enhanced BP visualization and nerve-tissue contrast across all cohorts, particularly in volunteers and patients with injuries. It also uncovered additional imaging features such as hypointense signals in ganglia, compressed nerve sites, and neoplastic enhancements. CE-MRN effectively mitigated muscle edema and vascular contamination, enabling precise classification of BP injuries. Overall, CE-MRN consistently enhances BP visualization and provides valuable imaging features for accurate diagnosis.
Collapse
Affiliation(s)
- Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Yuhong Ding
- Department of Radiology, Yijishan Hospital, Wannan Medical College, No.2 Zheshan West Road, Wuhu, 241001, Anhui, China
| | - Yu Su
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Youzhi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Tingting Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chungao Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xi Long
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
2
|
Chaudhary RK, Karkala N, Nepal P, Gupta E, Kaur N, Batchala P, Sapire J, Alam SI. Multimodality imaging review of ulnar nerve pathologies. Neuroradiol J 2024; 37:137-151. [PMID: 36961518 PMCID: PMC10973834 DOI: 10.1177/19714009231166087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
The ulnar nerve is the second most commonly entrapped nerve after the median nerve. Although clinical evaluation and electrodiagnostic studies remain widely used for the evaluation of ulnar neuropathy, advancements in imaging have led to increased utilization of these newer / better imaging techniques in the overall management of ulnar neuropathy. Specifically, high-resolution ultrasonography of peripheral nerves as well as MRI has become quite useful in evaluating the ulnar nerve in order to better guide treatment. The caliber and fascicular pattern identified in the normal ulnar nerves are important distinguishing features from ulnar nerve pathology. The cubital tunnel within the elbow and Guyon's canal within the wrist are important sites to evaluate with respect to ulnar nerve compression. Both acute and chronic conditions resulting in deformity, trauma as well as inflammatory conditions may predispose certain patients to ulnar neuropathy. Granulomatous diseases as well as both neurogenic and non-neurogenic tumors can also potentially result in ulnar neuropathy. Tumors around the ulnar nerve can also lead to mass effect on the nerve, particularly in tight spaces like the aforementioned canals. Although high-resolution ultrasonography is a useful modality initially, particularly as it can be helpful for dynamic evaluation, MRI remains most reliable due to its higher resolution. Newer imaging techniques like sonoelastography and microneurography, as well as nerve-specific contrast agents, are currently being investigated for their usefulness and are not routinely being used currently.
Collapse
Affiliation(s)
| | - Nikitha Karkala
- Department of Radiology, Northwell North Shore University Hospital, Long Island Jewish Medical Center, Queens, NY, USA
| | - Pankaj Nepal
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Elina Gupta
- Department of Radiology, St. Vincent’s Medical Center, Bridgeport, CT, USA
| | - Neeraj Kaur
- Department of Radiology, University Hospital of Northern British Columbia, Prince George, BC, Canada
| | - Prem Batchala
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | - Joshua Sapire
- Department of Radiology, St. Vincent’s Medical Center, Bridgeport, CT, USA
| | | |
Collapse
|
3
|
Kang J, Wu W, Kong X, Su Y, Liu D, Li C, Gao N, Wang Y, Zheng C, Weng Y, Wang L. Improved visualization of median, ulnar nerves, and small branches in the wrist and palm using contrast-enhanced magnetic resonance neurography. Ther Adv Neurol Disord 2024; 17:17562864241239739. [PMID: 38532801 PMCID: PMC10964438 DOI: 10.1177/17562864241239739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Background Magnetic resonance imaging of peripheral nerves in the wrist and palm is challenging due to the small size, tortuous course, complex surrounding tissues, and accompanying blood vessels. The occurrence of carpal palmar lesions leads to edema, swelling, and mass effect, which may further interfere with the display and identification of nerves. Objective To evaluate whether contrast-enhanced magnetic resonance neurography (ceMRN) improves the visualization of the morphology and pathology of the median, ulnar nerves, and their small branches in the wrist and palm. Design An observational study. Methods In total 57 subjects, including 36 volunteers and 21 patients with carpal palmar lesions, were enrolled and underwent ceMRN and non-contrast MRN (ncMRN) examination at 3.0 Tesla. The degree of vascular suppression, nerve visualization, diagnostic confidence, and lesion conspicuity was qualitatively assessed by two radiologists. Kappa statistics were obtained for inter-reader agreement. The signal-to-noise ratio, contrast ratio (CR), and contrast-to-noise ratio (CNR) of the median nerve were measured. The subjective ratings and quantitative measurements were compared between ncMRN and ceMRN. Results The inter-reader agreement was excellent (k > 0.8) for all qualitative assessments and visualization assessment of each nerve segment. Compared with ncMRN, ceMRN significantly improved vascular suppression in volunteers and patients (both p < 0.001). The ceMRN significantly enhanced nerve visualization of each segment (all p < 0.05) and diagnostic confidence in volunteers and patients (both p < 0.05). The ceMRN improved lesion conspicuity (p = 0.003) in patients. Quantitatively, ceMRN had significantly higher CRs of nerve versus subcutaneous fat, bone marrow, and vessels and CNR of nerve versus vessel than ncMRN (all p < 0.05). Conclusion The ceMRN significantly improves the visualization of peripheral nerves and pathology in the wrist and palm by robustly suppressing the signals of fat, bone marrow, and especially vessels in volunteers and patients.
Collapse
Affiliation(s)
- Jiamin Kang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Su
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chungao Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Nan Gao
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youzhi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuxiong Weng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Samet JD, Alizai H, Chalian M, Costelloe C, Deshmukh S, Kalia V, Kamel S, Mhuircheartaigh JN, Saade J, Walker E, Wessell D, Fayad LM. Society of skeletal radiology position paper - recommendations for contrast use in musculoskeletal MRI: when is non-contrast imaging enough? Skeletal Radiol 2024; 53:99-115. [PMID: 37300709 DOI: 10.1007/s00256-023-04367-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The following White Paper will discuss the appropriateness of gadolinium administration in MRI for musculoskeletal indications. Musculoskeletal radiologists should consider the potential risks involved and practice the judicious use of intravenous contrast, restricting administration to cases where there is demonstrable added value. Specific nuances of when contrast is or is not recommended are discussed in detail and listed in table format. Briefly, contrast is recommended for bone and soft tissue lesions. For infection, contrast is reserved for chronic or complex cases. In rheumatology, contrast is recommended for early detection but not for advanced arthritis. Contrast is not recommended for sports injuries, routine MRI neurography, implants/hardware, or spine imaging, but is helpful in complex and post-operative cases.
Collapse
Affiliation(s)
- Jonathan D Samet
- Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| | - Hamza Alizai
- CHOP Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Majid Chalian
- Department of Radiology, University of Washington, Seattle, USA
| | | | | | - Vivek Kalia
- Children's Scottish Rite Hospital, Dallas, USA
| | - Sarah Kamel
- Thomas Jefferson University Hospital, Philadelphia, USA
| | | | - Jimmy Saade
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, USA
| | - Eric Walker
- Penn State Health Milton S Hershey Medical Center, Hershey, USA
| | - Daniel Wessell
- Mayo Clinic Jacksonville Campus: Mayo Clinic in Florida, Jacksonville, USA
| | - Laura M Fayad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, USA.
| |
Collapse
|
5
|
Pribowo MA, Harahap MIR, Fazharyasti V, Dwihapsari Y, Kartikasari Y, Sugiyanto. Non-contrast enhancement of brachial plexus magnetic resonance imaging with compressed sensing. Eur J Radiol 2023; 165:110890. [PMID: 37269572 DOI: 10.1016/j.ejrad.2023.110890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE To observe the quality of brachial plexus (BP) images obtained from magnetic resonance imaging (MRI) with 3D T2 STIR SPACE sequence and compressed sensing (CS) and to compare the results with BP images from the same sequence without CS. METHODS In this study, compressed sensing was applied to acquire non-contrast BP images from ten healthy volunteers with 3D T2 STIR SPACE sequence to shorten acquisition time without sacrificing image quality. The acquisition time of scanning with CS was compared to that without CS. The quantitative signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared using paired t-test to determine the quality of images with and without CS. The qualitative assessment by three experienced radiologists was performed using a scoring scale from 1 (poor) to 5 (excellent) and analyzed for interobserver agreement on image quality. RESULTS The increasing SNR and CNR of images with CS were found in nine regions of BP images (p < 0.001) with faster acquisition time. The result of paired t-test (p < 0.001) illustrates the significant difference between images with CS compared to images without CS. The assessment of observers also shows higher scores for images with CS compared to images without CS. CONCLUSIONS This study demonstrates that CS can effectively increase the visibility of images and image boundaries, SNR, and CNR of BP images obtained with 3D T2 STIR SPACE sequence with the good interobserver agreement and within clinically optimal acquisition time compared to images from similar sequence without CS.
Collapse
Affiliation(s)
- Muhammad Agus Pribowo
- Department of Radiology, Gatot Soebroto Army Hospital (RSPAD Gatot Soebroto), Jakarta 10410, Indonesia
| | | | - Vininta Fazharyasti
- Department of Radiology, Gatot Soebroto Army Hospital (RSPAD Gatot Soebroto), Jakarta 10410, Indonesia
| | - Yanurita Dwihapsari
- Department of Physics, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia.
| | - Yeti Kartikasari
- Health Polytechnic of Semarang, Ministry of Health, Semarang 50239, Indonesia
| | - Sugiyanto
- Health Polytechnic of Semarang, Ministry of Health, Semarang 50239, Indonesia
| |
Collapse
|
6
|
Szaro P, McGrath A, Ciszek B, Geijer M. Magnetic resonance imaging of the brachial plexus. Part 1: Anatomical considerations, magnetic resonance techniques, and non-traumatic lesions. Eur J Radiol Open 2022; 9:100392. [PMID: 34988263 PMCID: PMC8695258 DOI: 10.1016/j.ejro.2021.100392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022] Open
Abstract
For magnetic resonance imaging (MRI) of non-traumatic brachial plexus (BP) lesions, sequences with contrast injection should be considered in the differentiation between tumors, infection, postoperative conditions, and post-radiation changes. The most common non-traumatic inflammatory BP neuropathy is radiation neuropathy. T2-weighted images may help to distinguish neoplastic infiltration showing a high signal from radiation-induced neuropathy with fibrosis presenting a low signal. MRI findings in inflammatory BP neuropathy are usually absent or discrete. Diffuse edema of the BP localized mainly in the supraclavicular part of BP, with side-to-side differences, and shoulder muscle denervation may be found on MRI. BP infection is caused by direct infiltration from septic arthritis of the shoulder joint, spondylodiscitis, or lung empyema. MRI may help to narrow down the list of differential diagnoses of tumors. The most common tumor of BP is metastasis. The most common primary tumor of BP is neurofibroma, which is visible as fusiform thickening of a nerve. In its solitary state, it may be challenging to differentiate from a schwannoma. The most common MRI finding is a neurogenic variant of thoracic outlet syndrome with an asymmetry of signal and thickness of the BP with edema. In abduction, a loss of fat directly related to the BP may be seen. Diffusion tensor imaging is a promising novel MRI sequences; however, the small diameter of the nerves contributing to the BP and susceptibility to artifacts may be challenging in obtaining sufficiently high-quality images. MRI allows narrowing the list of differential diagnoses of brachial plexus lesions. MRI helps to distinguish neoplastic infiltration from radiation neuropathy in T2-weighted images. Differentiation between tumors, infection, postoperative conditions and post-radiation changes is possible with contrast. MRI helps to determine the extent of the infection. Diffusion tensor MRI is a promising method for brachial plexus assessment.
Collapse
Affiliation(s)
- Pawel Szaro
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexandra McGrath
- Umeå University, Faculty of Medicine, Department of Clinical Sciences, Professional Development. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sweden
| | - Bogdan Ciszek
- Department of Descriptive and Clinical Anatomy, Centre of Biostructure Research, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland.,Department of Neurosurgery, Bogdanowicz Memorial Hospital, Niekłanska 4/24, 03-924 Warsaw, Poland
| | - Mats Geijer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Deshmukh S, Tegtmeyer K, Kovour M, Ahlawat S, Samet J. Diagnostic contribution of contrast-enhanced 3D MR imaging of peripheral nerve pathology. Skeletal Radiol 2021; 50:2509-2518. [PMID: 34052869 DOI: 10.1007/s00256-021-03816-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess the diagnostic contribution of contrast-enhanced 3D STIR (ce3D-SS) high-resolution magnetic resonance (MR) imaging of peripheral nerve pathology relative to conventional 2D sequences. MATERIALS AND METHODS In this IRB-approved retrospective study, two radiologists reviewed 60 MR neurography studies with nerve pathology findings. The diagnostic contribution of ce3D-SS imaging was scored on a 4-point Likert scale (1 = no additional information, 2 = supports interpretation, 3 = moderate additional information, and 4 = diagnosis not possible without ce3D-SS). Image quality, nerve visualization, and detection of nerve pathology were also assessed for both standard 2D neurography and ce3D-SS sequences utilizing a 3-point Likert scale. Descriptive statistics are reported. RESULTS The diagnostic contribution score for ce3D-SS imaging was 2.25 for the brachial plexus, 1.50 for extremities, and 1.75 for the lumbosacral plexus. For brachial plexus, the mean consensus scores for image quality, nerve visualization, and detection of nerve pathology were 2.55, 2.5, and 2.55 for 2D and 2.35, 2.45, and 2.45 for 3D. For extremities, the mean consensus scores for image quality, nerve visualization, and detection of nerve pathology were 2.60, 2.80, and 2.70 for 2D and 1.8, 2.20, and 2.10 for 3D. For lumbosacral plexus, the mean consensus scores for image quality, nerve visualization, and detection of nerve pathology were 2.45, 2.75, and 2.65 for 2D and 2.0, 2.45, and 2.25 for 3D. CONCLUSION Overall, our study supports the potential application of ce3D-SS imaging for MRN of the brachial plexus but suggests that 2D MRN protocols are sufficient for MRN of the extremities and lumbosacral plexus.
Collapse
Affiliation(s)
- Swati Deshmukh
- Department of Radiology, Northwestern University Feinberg School of Medicine, 420 E Superior St, Chicago, IL, 60611, USA
| | - Kyle Tegtmeyer
- Northwestern University Feinberg School of Medicine, 420 E Superior St, Chicago, IL, 60611, USA
| | - Mounisha Kovour
- University of Illinois At Urbana-Champaign, 601 E John St, Champaign, IL, 61820, USA
| | - Shivani Ahlawat
- Department of Radiology, Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Jonathan Samet
- Department of Radiology, Northwestern University Feinberg School of Medicine, 420 E Superior St, Chicago, IL, 60611, USA
| |
Collapse
|
8
|
Wang H, Li K, Wang Q, Liu X, Zhao X, Zhong Z, Gu C, Li R. Magnetic Resonance Neurography for Evaluation of Dorsal Root Ganglion Morphology. World Neurosurg 2021; 154:e54-e60. [PMID: 34224889 DOI: 10.1016/j.wneu.2021.06.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In this study, the morphologic characteristics and anatomic position of the dorsal root ganglion (DRG) were measured and analyzed in healthy people using magnetic resonance neurography (MRN), which provided an anatomical reference for minimally invasive spinal surgery. METHODS From January 2018 to December 2019, 20 healthy adult volunteers (10 male and 10 female volunteers between 20 and 65 years old) were scanned and imaged by 3.0 T magnetic resonance imaging combined with neuroimaging technology. Here, the position of the DRG was located, and the shape and size of the DRG, as well as its distance to the upper pedicle, were measured. RESULTS All volunteers provided satisfactory MRN scans of the L1-S1 lumbar DRG. According to the spatial position of the DRG, the morphology of the DRG can be divided into the intervertebral foramen type (81.01%), intraspinal type (16.01%), extraforaminal type (0.8%), and mixed type (2.0%). CONCLUSIONS The intervertebral foramen type and Intraspinal type were observed to be the main distribution forms of lumbar DRG. Due to the downward movement of lumbar segments, the position of the DRG was noted to gradually move to the spinal canal while its volume gradually increased. In addition, the distance from the upper pedicle was found to decrease gradually. MRN imaging can clearly show the shape, location, and adjacent relationship of the DRG, providing effective imaging guidance for the minimally invasive lumbar techniques.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China.
| | - Kaixiang Li
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China
| | - Qingyun Wang
- Department of Radiology, Dongguan Tungwah Hospital, Dongguan, China
| | - Xiaoqiang Liu
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China
| | - Xiangjun Zhao
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhanghua Zhong
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China
| | - Changwei Gu
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China
| | - Ruibing Li
- Department of Spine Surgery, Dongguan Tungwah Hospital, Dongguan, China
| |
Collapse
|