1
|
Poole CF. Assessment of liquid-liquid partition for the assignment of descriptors for the solvation parameter model. J Chromatogr A 2024; 1721:464850. [PMID: 38564932 DOI: 10.1016/j.chroma.2024.464850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and McGowan's characteristic volume, V, to model transfer properties between condensed phases. The V descriptor is assigned from structure. For compounds liquid at 20 °C the E descriptor can be assigned from the characteristic volume and its refractive index. The E descriptor for compounds solid at 20 °C and the S, A, and B descriptors are experimental properties traditionally assigned from chromatographic, liquid-liquid partition, and solubility measurements. In this report liquid-liquid partition constants in totally organic and aqueous biphasic systems are evaluated as a standalone technique for descriptor assignments. Using six totally organic biphasic systems the S, A, and B descriptors were assigned with an average absolute deviation (AAD) of about 0.04, 0.03, and 0.04, respectively, compared with the best estimate of the true descriptor values for 65 compounds. The E descriptor for compounds solid at 20 °C can only be estimated with an AAD of approximately 0.1. For six aqueous biphasic systems the B descriptor is assigned with a lower AAD of 0.028 and higher AAD of 0.08 and 0.05 for the S and A descriptors, respectively, than for the totally organic biphasic systems for compounds with a reliable value for the E descriptor. The preferred system for descriptor assignments utilizes both totally organic biphasic systems (heptane-1,1,1-trifluoroethanol, isopentyl ether-propylene carbonate, isopentyl ether-ethanolamine, heptane-ethylene glycol, heptane-formamide, and 1,2-dichloroethane-ethylene glycol) and aqueous biphasic systems (octanol-water, cyclohexane-water) with the possible substitution of some systems with alternative systems of similar selectivity. For 55 varied compounds this combination of eight organic and aqueous biphasic systems resulted in an AAD of approximately 0.03, 0.02, and 0.02 for the S, A, and B descriptors compared to the best estimate of the true descriptor value. For 30 compounds solid at 20 °C the AAD for the E descriptor of 0.11 is poorly assigned. The relative average absolute deviation in percent (RAAD) corresponds to 9.7 %, 3.1 %. 4.0 % and 8.3 % for E, S, A, and B, respectively, for the eight biphasic systems. Liquid-liquid partition is compared to reversed-phase liquid and gas chromatography as a standalone technique for descriptor assignments.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Poole CF. The effect of the assigned descriptors for phthalate esters on the characterization of their separation properties using the solvation parameter model. J Chromatogr A 2023; 1707:464296. [PMID: 37595351 DOI: 10.1016/j.chroma.2023.464296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Revised descriptors are determined for fifteen phthalate esters for use in the solvation parameter model and form part of the Wayne State University (WSU) compound descriptor database. For thirteen phthalate esters a comparison is made with the same compounds in the Abraham descriptor database. Gas chromatographic retention factors on poly(methyloctylsiloxane), SPB-Octyl, and poly(cyanopropylphenyldimethylsiloxane), DB-225, stationary phases are used to facilitate an assessment of the contribution of cavity formation and dispersion interactions, L descriptor, and dipole-type interactions, S descriptor, to the experimental retention factors (log k) for the phthalate esters with minimum interference from competing intermolecular interactions. The results indicate a systematic overprediction of the cavity and dispersion interaction term and underprediction of dipole-type interactions for the Abraham descriptors compared with the WSU descriptors for the phthalate esters. The average absolute deviation (AAD) for 13 phthalate esters on SPB-Octyl is 0.039 (WSU descriptors) compared with 0.252 (Abraham descriptors) and for 9 phthalate esters on DB-225 0.030 (WSU descriptors) compared with 0.167 (Abraham descriptors). The results for dipole-type interactions are confirmed and extended to include the hydrogen-bond basicity of the phthalate esters, B descriptor, by evaluation of partition constants in aqueous biphasic systems and the n-heptane-2,2,2-trifluoroethanol biphasic system. Differences in the contribution of the hydrogen-bond basicity of the phthalate esters to the experimental partition constants are largely random with respect to database selection but important for the accurate prediction of the partition constants. The AAD for the partition constant for 15 phthalate esters is 0.063 (WSU descriptors) compared with 0.320 (Abraham descriptors) for the heptane-2,2,2-trifluoroethanol biphasic system and 0.13 (WSU descriptors) compared with 0.25 (Abraham descriptors) for 9 phthalate esters in the octanol-water biphasic system. The WSU descriptors for the phthalate esters exhibit a better fit with the experimental data for separation systems and are free of the extreme values predicted for the Abraham descriptors for several phthalate esters.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
3
|
Poole CF. The effect of descriptor database selection on the physicochemical characterization and prediction of water-air, octanol-air and octanol-water partition constants using the solvation parameter model. J Chromatogr A 2023; 1706:464213. [PMID: 37567000 DOI: 10.1016/j.chroma.2023.464213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors (McGowan's characteristic volume, excess molar refraction, dipolarity/polarizability, hydrogen-bond acidity and basicity, and the gas-liquid partition constant on n-hexadecane at 298.15 K) are curated in two publicly accessible databases for hundreds (WSU compound descriptor database) or thousands (Abraham compound descriptor database). These databases were developed independently using different approaches resulting in descriptor values that vary for many compounds. Previously, it was shown that the two descriptor databases are not interchangeable, and the WSU descriptor database consistently demonstrated improved model performance for chromatographic systems where the uncertainty in the dependent variable was minimized by suitable quality control and calibration procedures. In this report we wish to evaluate whether the same conclusions are true for models with a dependent variable containing significant measurement uncertainty. To evaluate this hypothesis, we assembled databases for water-air, octanol-air, and octanol-water partition constants reported by multiple laboratories using various measurement methods. It was found that database selection has little effect on model quality or model predictive capability but significantly affects the assignment of the contribution of individual intermolecular interactions to the dependent variable. The latter information is database specific, and a quantitative comparison of system constants should be restricted to models using the same compound descriptor database.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Poole CF. The influence of descriptor database selection on the solvation parameter model for separation processes. J Chromatogr A 2023; 1692:463851. [PMID: 36773399 DOI: 10.1016/j.chroma.2023.463851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors characterize the size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. McGowan's characteristic volume and the excess molar refraction for liquids are available by calculation (E requires and experimental refractive index). The other descriptors and excess molar refraction for solids are experimental quantities and subject to greater variation or are estimated using computational or empirical models. Solute descriptors for several thousand compounds are available in the Abraham descriptor database and for several hundred compounds in the WSU descriptor database. These publicly accessible databases were developed independently using different approaches and for many compounds provide different descriptor values. In this report we evaluate the effect of mixing descriptors from the two databases on modeling chromatographic retention factors and liquid-liquid partition constants. It is shown that the two descriptor databases are not interchangeable. The WSU descriptor database consistently demonstrates improved model quality as determined by statistical parameters. Model system constants exhibit a general dependence on database selection with an approximately linear trend as a function of the fraction of compounds assigned descriptors from either database. There is no general model performance advantage to using mixed descriptor datasets and no real cause for concern for relatively large datasets containing < 15 % of compounds with descriptors assigned from the other database. For small datasets, descriptor quality is an important variable for adequate model performance.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
5
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
6
|
Li BJ. Exploring Three-Dimensional Space of Extractables and Leachables in Volatility, Hydrophobicity, and Molecular Weight and Assessment of Roles of Gas and Liquid Chromatographic Methods in Their Comprehensive Analysis. J Pharm Biomed Anal 2022; 223:115142. [DOI: 10.1016/j.jpba.2022.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
7
|
Evaluation of Retention Range of Extractables Under Linear Gradient Conditions for Reversed-Phase Chromatographic Considerations and Requirements in Extractables Analytical Methods for Chemical Characterization of Medical Devices. Chromatographia 2022. [DOI: 10.1007/s10337-022-04185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Li J. Evaluation of fatty tissue representative solvents in extraction of medical devices for chromatographic analysis of devices' extractables and leachables based on Abraham general solvation model. J Chromatogr A 2022; 1676:463240. [PMID: 35752148 DOI: 10.1016/j.chroma.2022.463240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
Extraction solvents used in chemical characterization (i.e., extractables and leachables testing, E&L) of fatty tissue-contacting medical devices for biocompatibility assessment per ISO 10993 have been studied by Abraham general solvation models. Chemically suitable alternative solvents to fatty tissues in solvation properties (solubility, partition, extraction, etc.) have been proposed based on Abraham's organic solvent system coefficients for water and air to condensed organic solvent phases. This evaluation is built upon the conclusion by Abraham, Acree Jr and Cometto-Muñiz that olive oil is chemically corresponding to fatty tissues. However, olive oil, if used as an extraction solvent to simulate fatty tissues, is in general not analytically expedient (realistic) per ISO 10993-18 (2020) for chromatographic analysis, and it is critical to seek alternative solvents to olive oil to perform the extraction. Although nonpolar solvents such as alkanes have been proposed and used as alternative solvents to vegetable oils, they are not equivalent to olive oil in solvation properties. Due to the practical challenge in chromatographic analysis of oil samples and the difference in migration kinetics of E&L between oil and organic solvents, the computational approach is the only realistic option to evaluate chemically alternative solvents to olive oil to simulate fatty tissue extraction. By comparing Abraham solvent system coefficients for water and air to condensed organic solvent phases distribution, a five-dimensional space distance (D) between solvents and olive oil as a reference solvent is calculated using Abraham and Martin equation to predict alternative or similar solvents to olive oil. The results of the calculation are further evaluated using E&L solubility ratio between solvents and olive oil, taking into consideration of solvent safety and physical properties. It is concluded from the study that butanone and dioxane are chemically the most suitable alternative or representative solvents to olive oil. They can be used as fatty tissue representative solvents in chemical characterization study of medical device. As Abraham solvation model is solvent system specific, not solute specific, the conclusions from this study are considered as universal.
Collapse
Affiliation(s)
- Jianwei Li
- Chemical Characterization Solutions, LLC, PO Box 113, Newport, MN 55055, USA.
| |
Collapse
|
9
|
Li J. Calculation of Relative Solubility of Semipolar Solvents by Abraham Solvation Parameter Model for Extractables and Leachables Analysis in Chemical Characterization of Medical Devices. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Poole CF. Wayne State University experimental descriptor database for use with the solvation parameter model. J Chromatogr A 2020; 1617:460841. [DOI: 10.1016/j.chroma.2019.460841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023]
|
11
|
Poole CF. Gas chromatography system constant database over an extended temperature range for nine open-tubular columns. J Chromatogr A 2019; 1590:130-145. [DOI: 10.1016/j.chroma.2019.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/07/2018] [Accepted: 01/10/2019] [Indexed: 11/25/2022]
|
12
|
Lenca N, Poole CF. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography. J Chromatogr A 2018; 1559:164-169. [DOI: 10.1016/j.chroma.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
|
13
|
Poole CF. Partition constant database for totally organic biphasic systems. J Chromatogr A 2017; 1527:18-32. [DOI: 10.1016/j.chroma.2017.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
|
14
|
Lenca N, Poole CF. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide for gas chromatography. J Chromatogr A 2017; 1525:138-144. [DOI: 10.1016/j.chroma.2017.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
15
|
Lenca N, Poole CF. System map for the ionic liquid stationary phase tri(tripropylphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide for gas chromatography. J Chromatogr A 2017; 1524:210-214. [DOI: 10.1016/j.chroma.2017.09.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/10/2023]
|
16
|
Wu J, Wang C, Liang X, Yang X, Wang C, Wu Q, Wang Z. Magnetic spherical carbon as an efficient adsorbent for the magnetic extraction of phthalate esters from lake water and milk samples. J Sep Sci 2017; 40:2207-2213. [DOI: 10.1002/jssc.201601355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/10/2017] [Accepted: 03/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juanjuan Wu
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Chenhuan Wang
- College of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao China
| | - Xinyu Liang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Xiumin Yang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Chun Wang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Qiuhua Wu
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Zhi Wang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| |
Collapse
|
17
|
Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 2017; 1486:2-19. [DOI: 10.1016/j.chroma.2016.05.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022]
|
18
|
Abraham MH, Acree WE. Physicochemical and biochemical properties for the dialkyl phthalates. CHEMOSPHERE 2015; 119:871-880. [PMID: 25240951 DOI: 10.1016/j.chemosphere.2014.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Abraham descriptors for 40 phthalate esters have been calculated from a variety of experimental data, including water-solvent partition coefficients, high performance liquid chromatographic and gas chromatographic retention times. These descriptors can then be used to calculate a large number of physicochemical and biochemical properties of the esters; values are given for dinonyl phthalate as an example. Once the Abraham descriptors have been obtained for a given phthalate ester, no more than simple arithmetic is needed to calculate values of a huge range of properties. The 'three solubility method' yields data that are consistent for a particular physicochemical property, but not necessarily correct data. Previous literature values for air-water partition coefficients for the higher phthalates are likely to be incorrect by several orders of magnitude.
Collapse
Affiliation(s)
- Michael H Abraham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK.
| | - William E Acree
- Department of Chemistry, 1155 Union Circle Drive #305070, University of North Texas, Denton, TX 76203-5017, United States
| |
Collapse
|
19
|
Endo S, Goss KU. Applications of polyparameter linear free energy relationships in environmental chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12477-91. [PMID: 25280011 DOI: 10.1021/es503369t] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Partitioning behavior of organic chemicals has tremendous influences on their environmental distribution, reaction rates, bioaccumulation, and toxic effects. Polyparameter linear free energy relationships (PP-LFERs) have been proven to be useful to characterize the equilibrium partitioning of organic chemicals in various environmental and technical partitioning systems and predict the respective partition coefficients. Over the past decade, PP-LFER solute descriptors for numerous environmentally relevant organic chemicals and system parameters for environmentally important partitioning systems have been determined, extending substantially the applicability of the PP-LFER approaches. However, the information needed for the use of PP-LFERs including descriptors and parameters is scattered over a large number of publications. In this work, we review the state of the art of the PP-LFER approaches in environmental chemical applications. The solute descriptors and system parameters reported in the literature and the availability of their database are summarized, and their calibration and prediction methods are overviewed. We also describe tips and pitfalls associated with the use of the PP-LFER approaches and identify research needs to improve further the usefulness of PP-LFERs for environmental chemistry.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Analytical Environmental Chemistry, UFZ-Helmholtz Centre for Environmental Research , Permoserstrasse 15, D-04318 Leipzig, Germany
| | | |
Collapse
|
20
|
Ariyasena TC, Poole CF. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid–liquid partition in totally organic biphasic systems. J Chromatogr A 2014; 1361:240-54. [DOI: 10.1016/j.chroma.2014.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
21
|
Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A 2013; 1317:85-104. [DOI: 10.1016/j.chroma.2013.05.045] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/15/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
|
22
|
Models for Liquid–Liquid Partition in the System Ethanolamine-Organic Solvent and Their Use for Estimating Descriptors for Organic Compounds. Chromatographia 2013. [DOI: 10.1007/s10337-013-2387-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Poole CF, Karunasekara T, Ariyasena TC. Totally organic biphasic solvent systems for extraction and descriptor determinations. J Sep Sci 2012; 36:96-109. [DOI: 10.1002/jssc.201200709] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/18/2012] [Accepted: 08/18/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Colin F. Poole
- Department of Chemistry; Wayne State University; Detroit; MI; USA
| | | | | |
Collapse
|
24
|
Karunasekara T, Poole CF. Compounds for expanding the descriptor space for characterizing separation systems. J Chromatogr A 2012; 1266:124-30. [DOI: 10.1016/j.chroma.2012.09.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
|