Al-Hashimi NN, El-Sheikh AH, Alruwad MI, Odeh MM. Solvent bar microextraction combined with HPLC-DAD for simultaneous determination of diuretics in human urine and plasma samples.
Curr Pharm Biotechnol 2021;
23:1204-1213. [PMID:
33618643 DOI:
10.2174/1389201022666210222111943]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND
A simple and powerful microextraction procedure, the solvent bar microextraction (SBME), was used for the simultaneous determination of two diuretics, furosemide and spironolactone in human urine and plasma samples, using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD).
METHODS
The appropriate amount (2 µL) of 1-octanol as an organic solvent confined within (2.5 cm) of a porous hollow fiber micro-tube, sealed at both ends was used for this procedure. The conditions for the SBME were optimized in water and the analytical performance were examined in spiked human urine and plasma samples.
RESULTS
The optimized method exhibited good linearity (R2 > 0.997) over the studied range of higher than 33 to 104 µg L-1 for furosemide and spironolactone in urine and plasma samples, illustrating a satisfactory precision level with RSD values between 2.1% and 9.1%.
DISCUSSION
The values of the limits of detection were found to be in the range of 6.39 to 9.67 µg L-1, and extraction recovery˃ 58.8% for both diuretics in urine and plasma samples. The applicability and effectiveness of the proposed method for the determination of furosemide and spironolactone in patient urine samples were tested.
CONCLUSION
In comparison with reference methods, the attained results demonstrated that SBME combined with HPLC-DAD was proved to be simple, inexpensive, and promising analytical technology for the simultaneous determination of furosemide and spironolactone in urine and plasma samples.
Collapse