1
|
Tong J, Zhao W, Wang K, Deng D, Xiao L. Organ-level distribution tandem mass spectrometry analysis of three structural types of brassinosteroids in rapeseed. FRONTIERS IN PLANT SCIENCE 2024; 15:1308781. [PMID: 38516662 PMCID: PMC10956354 DOI: 10.3389/fpls.2024.1308781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Background Brassinosteroids (BRs) are a class of naturally occurring steroidal phytohormones mediating a wide range of pivotal developmental and physiological functions throughout the plant's life cycle. Therefore, it is of great significance to determine the content and the distribution of BRs in plants.Regretfully, although a large number of quantitative methods for BRs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) have been reported, the in planta distribution of BRs is still unclear because of their lower contents in plant tissues and the lack of effective ionizable groups in their chemical structures. Methods We stablished a novel analytical method of BRs based on C18 cartridge solid-phase extraction (SPE) purification, 4-(dimethylamino)-phenylboronic acid (DMAPBA) derivatization, and online valve-switching system coupled with ultra-high performance liquid chromatography-electro spray ionization-triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS). This method has been used to quantify three structural types of BRs (epibrassinolide, epicastasterone, and 6-deoxo-24-epicastaster one) in different organs of Brassica napus L. (rapeseed). Results We obtained the contents of three structural types of BRs in various organ tissues of rapeseed. The contents of three BRs in rapeseed flowers were the highest, followed by tender pods. The levels of three BRs all decreased during the maturation of the organs. We outlined the spatial distribution maps of three BRs in rapeseed based on these results, so as to understand the spatial distribution of BRs at the visual level. Conclusions Our results provided useful information for the precise in situ localization of BRs in plants and the metabolomic research of BRs in future work. The in planta spatial distribution of BRs at the visual level has been studied for the first time.
Collapse
Affiliation(s)
- Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Laboratory of Yuelu Mountain, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenkui Zhao
- College of Chemistry and Materials, Hunan Agricultural University, Changsha, China
| | - Keming Wang
- Assets and Laboratory Management Department, Hunan Agricultural University, Changsha, China
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Laboratory of Yuelu Mountain, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Laboratory of Yuelu Mountain, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Amouei J, Bazmandegan-Shamili A, Ranjbar-Karimi R, Rohani Moghadam M. Ultrasound-assisted dispersive liquid–liquid microextraction combined with ion mobility spectrometry for the simultaneous preconcentration and determination of dimethoate and chlorpyrifos in fruit, vegetable, and water samples. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2193411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Hameedat F, Hawamdeh S, Alnabulsi S, Zayed A. High Performance Liquid Chromatography (HPLC) with Fluorescence Detection for Quantification of Steroids in Clinical, Pharmaceutical, and Environmental Samples: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061807. [PMID: 35335170 PMCID: PMC8949805 DOI: 10.3390/molecules27061807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the HPLC combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids. In this review, we covered HPLC-FLD methods reported in the literature for the steroids quantification in clinical, pharmaceutical, and environmental applications, focusing on the various approaches of fluorescent derivatization. The aspects related to analytical methodology including sample preparation, derivatization reagents, and chromatographic conditions will be discussed.
Collapse
Affiliation(s)
- Fatima Hameedat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
| | - Sahar Hawamdeh
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Soraya Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
| | - Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
- Correspondence: ; Tel.: +962-2-720-1000 (ext. 23240); Fax: +962-2-720-1075
| |
Collapse
|
4
|
Starodubtseva A, Kalachova T, Iakovenko O, Stoudková V, Zhabinskii V, Khripach V, Ruelland E, Martinec J, Burketová L, Kravets V. BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging. Int J Mol Sci 2021; 22:3599. [PMID: 33808421 PMCID: PMC8036458 DOI: 10.3390/ijms22073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Brassinosteroids (BRs) are plant hormones of steroid nature, regulating various developmental and adaptive processes. The perception, transport, and signaling of BRs are actively studied nowadays via a wide range of biochemical and genetic tools. However, most of the knowledge about BRs intracellular localization and turnover relies on the visualization of the receptors or cellular compartments using dyes or fluorescent protein fusions. We have previously synthesized a conjugate of epibrassinolide with green fluorescent dye BODIPY (eBL-BODIPY). Here we present a detailed assessment of the compound bioactivity and its suitability as probe for in vivo visualization of BRs. We show that eBL-BODIPY rapidly penetrates epidermal cells of Arabidopsis thaliana roots and after long exposure causes physiological and transcriptomic responses similar to the natural hormone.
Collapse
Affiliation(s)
- Anastasiia Starodubtseva
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Institute of Ecology and Environmental Sciences of Paris, Paris-Est University, UPEC, 94010 Créteil, France
| | - Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Oksana Iakovenko
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine;
| | - Vera Stoudková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Vladimir Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus; (V.Z.); (V.K.)
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus; (V.Z.); (V.K.)
| | - Eric Ruelland
- UMR 7025 CNRS, GEC Génie Enzymatique et Cellulaire, Centre de Recherches, Rue Personne de Roberval, CS 60319, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne CEDEX, France;
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine;
| |
Collapse
|
5
|
Huang H, Wang D, Belwal T, Dong L, Lu L, Zou Y, Li L, Xu Y, Luo Z. A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chem 2021; 356:129704. [PMID: 33831827 DOI: 10.1016/j.foodchem.2021.129704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
The postharvest senescence accompanied by yellowing limited the shelf-life of broccoli. In this study, we developed a novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil and applied it to broccoli for preservation. Results showed that double emulsion prepared by whey protein concentrate-high methoxyl pectin (1:3) exhibited best storage stability with largest particle size (581.30 nm), lowest PDI (0.23) and zeta potential (-40.31 mV). This double emulsion also exhibited highest encapsulation efficiency of brassinolide (92%) and cinnamon essential oil (88%). The broccoli coated with double emulsion maintained higher chlorophyll contents and activities of chlorophyllase and magnesium-dechelatase were reduced by 9% and 24%, respectively. The energy metabolic enzymes (SDH, CCO, H+-ATPase, Ca2+-ATPase) were also activated, inducing higher level of ATP and energy charge. These results demonstrated W/O/W double emulsion co-delivering brassinolide and cinnamon essential delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism.
Collapse
Affiliation(s)
- Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Di Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Li Dong
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ling Lu
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ying Zou
- Wenzhou Vocational College of Science and Technology, Wenzhou 325000, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Ningbo Research Institute, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
6
|
Yang K, Gong XL, Li GC, Huang LQ, Ning C, Wang CZ. A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). eLife 2020; 9:64114. [PMID: 33305735 PMCID: PMC7806260 DOI: 10.7554/elife.64114] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Feeding and oviposition deterrents help phytophagous insects to identify host plants. The taste organs of phytophagous insects contain bitter gustatory receptors (GRs). To explore their function, the GRs in Plutella xylostella were analyzed. Through RNA sequencing and qPCR, we detected abundant PxylGr34 transcripts in the larval head and adult antennae. Functional analyses using the Xenopus oocyte expression system and 24 diverse phytochemicals showed that PxylGr34 is tuned to the canonical plant hormones brassinolide (BL) and 24-epibrassinolide (EBL). Electrophysiological analyses revealed that the medial sensilla styloconica of 4th instar larvae are responsive to BL and EBL. Dual-choice bioassays demonstrated that BL inhibits larval feeding and female oviposition. Knock-down of PxylGr34 by RNAi attenuates the taste responses to BL, and abolishes BL-induced feeding inhibition. These results increase our understanding of how herbivorous insects detect compounds that deter feeding and oviposition, and may be useful for designing plant hormone-based pest management strategies. Plant-eating insects use their sense of taste to decide where to feed and where to lay their eggs. They do this using taste sensors called gustatory receptors which reside in the antennae and legs of adults, and in the mouthparts of larvae. Some of these sensors detect sugars which signal to the insect that the plant is a nutritious source of food. While others detect bitter compounds, such as poisons released by plants in self-defense. One of the most widespread plant-eating insects is the diamondback moth, which feeds and lays its eggs on cruciferous vegetable crops, like cabbage, oilseed rape and broccoli. Before laying its eggs, female diamondback moths pat the vegetable’s leaves with their antennae, tasting for the presence of chemicals. But little was known about the identity of these chemicals. Cabbages produce large amounts of a hormone called brassinolide, which is known to play a role in plant growth. To find out whether diamondback moths can taste this hormone, Yang et al. examined all their known gustatory receptors. This revealed that the adult antennae and larval mouthparts of these moths make high levels of a receptor called PxylGr34. To investigate the role of PxylGr34, Yang et al. genetically modified frog eggs to produce this receptor. Various tests on these receptors, as well as receptors in the mouthparts of diamondback larvae, showed that PxylGr34 is able to sense the hormone brassinolide. To find out how this affects the behavior of the moths, Yang et al. investigated how adults and larvae responded to different levels of the hormone. This revealed that the presence of brassinolide significantly decreased both larval feeding and the amount of eggs laid by adult moths. Farmers already use brassinolide to enhance plant growth and protect crops from stress. These results suggest that the hormone might also help to shield plants from insect damage. However, more research is needed to understand how this hormone acts as a deterrent. Further studies could improve understanding of insect behavior and potentially identify more chemicals that can be used for pest control.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Diuzheva A, Locatelli M, Tartaglia A, Goga M, Ferrone V, Carlucci G, Andruch V. Application of liquid-phase microextraction to the analysis of plant and herbal samples. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:687-699. [PMID: 32291862 DOI: 10.1002/pca.2939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The analysis of plant and herbal samples is a challenging task for analytical chemists due to the complexity of the matrix combined with the low concentration of analytes. In recent years different liquid-phase microextraction (LPME) techniques coupled with a variety of analytical equipment have been developed for the determination of both organic and inorganic analytes. OBJECTIVE Over the past few years, the number of research papers in this field has shown a markedly growing tendency. Therefore, the purpose of this review paper is to summarise and critically evaluate research articles focused on the application of LPME techniques for the analysis of plant and herbal samples. RESULTS Due to the complex nature of the samples, the direct application of LPME techniques to the analysis of plants has not often been done. LPME techniques as well as their modalities have been commonly applied in combination with other pretreatment techniques, including a solid-liquid extraction technique supported by mechanical agitation or auxiliary energies for plant analysis. Applications and the most important parameters are summarised in the tables. CONCLUSION This review summarises the application of the LPME procedure and shows the major benefits of LPME, such as the low volume of solvents used, high enrichment factor, simplicity of operation and wide selection of applicable detection techniques. We can expect further development of microextraction analytical methods that focus on direct sample analysis with the application of green extraction solvents while fully automating procedures for the analysis of plant materials.
Collapse
Affiliation(s)
- Alina Diuzheva
- Department of Analytical Chemistry, Institute of Chemistry, P.J. Šafárik University, Košice, Slovakia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czech Republic
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Angela Tartaglia
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Michal Goga
- Department of Botany, Institute of Biology and Ecology, P.J. Šafárik University, Košice, Slovakia
| | - Vincenzo Ferrone
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Giuseppe Carlucci
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vasil Andruch
- Department of Analytical Chemistry, Institute of Chemistry, P.J. Šafárik University, Košice, Slovakia
| |
Collapse
|
8
|
Wang XY, Xiong CF, Ye TT, Ding J, Feng YQ. Online polymer monolith microextraction with in-situ derivatization for sensitive detection of endogenous brassinosteroids by LC-MS. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
10
|
Li Y, Deng T, Duan C, Ni L, Wang N, Guan Y. Dispersive Matrix Solid-Phase Extraction Method Coupled with High Performance Liquid Chromatography-Tandem Mass Spectrometry for Ultrasensitive Quantification of Endogenous Brassinosteroids in Minute Plants and Its Application for Geographical Distribution Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3037-3045. [PMID: 30821966 DOI: 10.1021/acs.jafc.8b07224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An ultrasensitive analysis method for quantification of endogenous brassinosteroids in fresh minute plants was developed based on dispersive matrix solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry. During the dispersive matrix solid-phase extraction, plant samples were first ground with solid sorbent (dispersant) in one microcentrifuge tube and then centrifuged after adding extraction solvent and cleanup materials (another type of sorbent). Three protocols based on dispersive matrix solid-phase extraction were compared and discussed for plant samples with different matrix complexity. The choice of any protocol was a compromise of increasing purification efficiency and decreasing sample loss. Under optimized conditions, the limits of detection were 1.38-6.75 pg mL-1 for five brassinosteroids in the oilseed rape samples. The intraday and interday precisions were in the range of 0.8%-9.8% and 4.6%-17.3%, respectively. The proposed method was successfully applied to detection of endogenous brassinosteroids in milligram oilseed rape (2.0 mg) and submilligram Arabidopsis thaliana seedlings (0.5 mg). Finally, the geographical distribution of five endogenous brassinosteroids of Brassica napus L. oilseed rape in different provinces of origin in the Yangtze River basin was described.
Collapse
Affiliation(s)
- Yuxuan Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Ting Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Chunfeng Duan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P.R. China
| | - Lanxiu Ni
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Nan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Yafeng Guan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , P.R. China
| |
Collapse
|
11
|
Luo XT, Cai BD, Yu L, Ding J, Feng YQ. Sensitive determination of brassinosteroids by solid phase boronate affinity labeling coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Wang Y, Suo Y, Sun Y, You J. Determination of Triterpene Acids from 37 Different Varieties of Raspberry using Pre-column Derivatization and HPLC Fluorescence Detection. Chromatographia 2016. [DOI: 10.1007/s10337-016-3174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Deng T, Wu D, Duan C, Guan Y. Ultrasensitive quantification of endogenous brassinosteroids in milligram fresh plant with a quaternary ammonium derivatization reagent by pipette-tip solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2016; 1456:105-12. [DOI: 10.1016/j.chroma.2016.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
14
|
Determination of phthalates in food simulants and liquid samples using ultrasound-assisted dispersive liquid–liquid microextraction followed by solidification of floating organic drop. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Malachowska-Ugarte M, Sperduto C, Ermolovich YV, Sauchuk AL, Jurášek M, Litvinovskaya RP, Straltsova D, Smolich I, Zhabinskii VN, Drašar P, Demidchik V, Khripach VA. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids 2015. [PMID: 26210210 DOI: 10.1016/j.steroids.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three BS-BODIPY (brassinosteroids-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) conjugates were synthesized and their fluorescent and immunological properties were investigated. Two of the conjugates, having present all the functional groups characteristic of BS, were shown to be potentially useful as biological probes to study involvement of BS into physiological processes in living cells.
Collapse
Affiliation(s)
- Magdalena Malachowska-Ugarte
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Claudio Sperduto
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Yuri V Ermolovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Alina L Sauchuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Michal Jurášek
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Raisa P Litvinovskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Darya Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Minsk, Belarus
| | - Igor Smolich
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Minsk, Belarus
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Pavel Drašar
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Minsk, Belarus
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| |
Collapse
|