1
|
Pebriana RB, Simsek S, Heijink M, Giera M. Rapid Analysis of Sterols in Blood-Derived Samples. Methods Mol Biol 2025; 2855:291-302. [PMID: 39354314 DOI: 10.1007/978-1-0716-4116-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Dysregulations of cholesterol biosynthesis are known to be associated with several pathologies. Due to the rapid growth of clinical investigations in this research area, a specific, fast, and valid method for analyzing cholesterol, its precursors, and metabolites is required. Here, we describe a rapid method for sample preparation, separation, and quantification of sterols in blood-derived samples using polymeric solid phase extraction followed by gas chromatography-mass spectrometry. The validated method demonstrates a reliable quantification of cholesterol, its precursors, and metabolites.
Collapse
Affiliation(s)
- Ratna Budhi Pebriana
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Selma Simsek
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Marieke Heijink
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands.
| |
Collapse
|
2
|
Liebl M, Huber L, Elsaman H, Merschak P, Wagener J, Gsaller F, Müller C. Quantifying Isoprenoids in the Ergosterol Biosynthesis by Gas Chromatography-Mass Spectrometry. J Fungi (Basel) 2023; 9:768. [PMID: 37504756 PMCID: PMC10381423 DOI: 10.3390/jof9070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The ergosterol pathway is a promising target for the development of new antifungals since its enzymes are essential for fungal cell growth. Appropriate screening assays are therefore needed that allow the identification of potential inhibitors. We developed a whole-cell screening method, which can be used to identify compounds interacting with the enzymes of isoprenoid biosynthesis, an important part of the ergosterol biosynthesis pathway. The method was validated according to the EMEA guideline on bioanalytical method validation. Aspergillus fumigatus hyphae and Saccharomyces cerevisiae cells were lysed mechanically in an aqueous buffer optimized for the enzymatic deconjugation of isoprenoid pyrophosphates. The residual alcohols were extracted, silylated and analyzed by GC-MS. The obtained isoprenoid pattern provides an indication of the inhibited enzyme, due to the accumulation of specific substrates. By analyzing terbinafine-treated A. fumigatus and mutant strains containing tunable gene copies of erg9 or erg1, respectively, the method was verified. Downregulation of erg9 resulted in a high accumulation of intracellular farnesol as well as elevated levels of geranylgeraniol and isoprenol. The decreased expression of erg1 as well as terbinafine treatment led to an increased squalene content. Additional analysis of growth medium revealed high farnesyl pyrophosphate levels extruded during erg9 downregulation.
Collapse
Affiliation(s)
- Maximilian Liebl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, 81377 Munich, Germany; (M.L.); (L.H.)
| | - Ludwig Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, 81377 Munich, Germany; (M.L.); (L.H.)
| | - Hesham Elsaman
- Institute for Hygiene and Microbiology, Julius-Maximilians-University Wuerzburg, 97080 Wuerzburg, Germany; (H.E.); (J.W.)
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.M.); (F.G.)
| | - Johannes Wagener
- Institute for Hygiene and Microbiology, Julius-Maximilians-University Wuerzburg, 97080 Wuerzburg, Germany; (H.E.); (J.W.)
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, D08 RX0X Dublin, Ireland
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.M.); (F.G.)
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, 81377 Munich, Germany; (M.L.); (L.H.)
| |
Collapse
|
3
|
Rozentsvet OA, Kotlova ER, Bogdanova ES, Nesterov VN, Senik SV, Shavarda AL. Balance of Δ 5-and Δ 7-sterols and stanols in halophytes in connection with salinity tolerance. PHYTOCHEMISTRY 2022; 198:113156. [PMID: 35248579 DOI: 10.1016/j.phytochem.2022.113156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Sterols (STs) have a key role in regulating the fluidity and permeability of membranes in plants (phytosterols) that have wide structural diversity. We studied the effect of structural STs diversity on salt tolerance in halophytes. Specifically, we used gas chromatography-mass spectrometry (GC-MS), including two-dimensional gas chromatography-mass spectrometry (GCxGC-MS), to assess the STs composition in leaves of 21 species of wild-growing halophytes from four families (Asteraceae, Chenopodiaceae, Plumbaginaceae, Tamaricaceae) and three ecological groups (Euhalophytes (Eu), recretophytes (Re), salt excluders (Ex)). Fifteen molecular species of STs from three main groups, Δ5-, Δ7-and Δ0- STs (stanols), were detected. Plants of the genus Artemisia were characterized by a high content of stigmasterol (30-49% of the total STs), while β-sitosterol was the major compound in two Limonium spp., where it comprised 84-92% of the total STs. Species of Chenopodiaceae were able to accumulate both Δ5-and Δ7-STs and stanols. The content of the predominant Δ5-STs decreased in the order Ex → Re → Eu. Molecular species with a saturated steroid nucleus were identified in Eu and Re, suggesting their special salt-accumulating and salt-releasing functions. The structural analogues of stigmasterol, having a double bond C-22, were stigmasta-7,22-dien-3β-ol (spinasterol) and stigmast-22-en-3β-ol (Δ7--sitosterol). The ratio of Δ5-stigmasterol/Δ5-β-sitosterol increased in Ex plants, and spinasterol/Δ7--sitosterol and 22-stigmastenol/sitostanol increased in Eu plants. These data support the well-known role of stigmasterol and its isomers in plant responses to abiotic and biotic factors. The variability in STs types and their ratios suggested some involvement of the sterol membrane components in plant adaptation to growth conditions. The balance of Δ5-, Δ7-and stanols, as well as the accumulation of molecular analogues of stigmasterol, was suggested to be associated with salt tolerance of the plant species in this investigation.
Collapse
Affiliation(s)
- Olga A Rozentsvet
- Samara Federal Research Scientific Center, Russian Academy of Science, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, Komzin Street 10, 445003, Togliatti, Russia.
| | - Ekaterina R Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Street 2, St. Petersburg, 197376, Russia
| | - Elena S Bogdanova
- Samara Federal Research Scientific Center, Russian Academy of Science, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, Komzin Street 10, 445003, Togliatti, Russia
| | - Viktor N Nesterov
- Samara Federal Research Scientific Center, Russian Academy of Science, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, Komzin Street 10, 445003, Togliatti, Russia
| | - Svetlana V Senik
- Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Street 2, St. Petersburg, 197376, Russia
| | - Aleksey L Shavarda
- Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Street 2, St. Petersburg, 197376, Russia
| |
Collapse
|
4
|
Bouwknegt J, Wiersma SJ, Ortiz-Merino RA, Doornenbal ESR, Buitenhuis P, Giera M, Müller C, Pronk JT. A squalene-hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments. Proc Natl Acad Sci U S A 2021; 118:e2105225118. [PMID: 34353908 PMCID: PMC8364164 DOI: 10.1073/pnas.2105225118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biosynthesis of sterols, which are key constituents of canonical eukaryotic membranes, requires molecular oxygen. Anaerobic protists and deep-branching anaerobic fungi are the only eukaryotes in which a mechanism for sterol-independent growth has been elucidated. In these organisms, tetrahymanol, formed through oxygen-independent cyclization of squalene by a squalene-tetrahymanol cyclase, acts as a sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, Antonie Van Leeuwenhoek, 37, 353-358 (1971)] that Schizosaccharomyces japonicus is exceptional among yeasts in growing anaerobically on synthetic media lacking sterols and unsaturated fatty acids. Mass spectrometry of lipid fractions of anaerobically grown Sch. japonicus showed the presence of hopanoids, a class of cyclic triterpenoids not previously detected in yeasts, including hop-22(29)-ene, hop-17(21)-ene, hop-21(22)-ene, and hopan-22-ol. A putative gene in Sch. japonicus showed high similarity to bacterial squalene-hopene cyclase (SHC) genes and in particular to those of Acetobacter species. No orthologs of the putative Sch. japonicus SHC were found in other yeast species. Expression of the Sch. japonicus SHC gene (Sjshc1) in Saccharomyces cerevisiae enabled hopanoid synthesis and stimulated anaerobic growth in sterol-free media, thus indicating that one or more of the hopanoids produced by SjShc1 could at least partially replace sterols. Use of hopanoids as sterol surrogates represents a previously unknown adaptation of eukaryotic cells to anaerobic growth. The fast anaerobic growth of Sch. japonicus in sterol-free media is an interesting trait for developing robust fungal cell factories for application in anaerobic industrial processes.
Collapse
Affiliation(s)
- Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Sanne J Wiersma
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Eline S R Doornenbal
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Petrik Buitenhuis
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximillians University Munich, 81377 Munich, Germany
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands;
| |
Collapse
|
5
|
Junker J, Kamp F, Winkler E, Steiner H, Bracher F, Müller C. Effective sample preparation procedure for the analysis of free neutral steroids, free steroid acids and sterol sulfates in different tissues by GC-MS. J Steroid Biochem Mol Biol 2021; 211:105880. [PMID: 33757894 DOI: 10.1016/j.jsbmb.2021.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile. We developed and validated a method that allows the analysis of free neutral steroids, including intermediates of cholesterol biosynthesis, free oxysterols, C19 and C21 steroids, free steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and report the endogenous concentrations of 29 physiological steroids.
Collapse
Affiliation(s)
- Julia Junker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Edith Winkler
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany.
| |
Collapse
|
6
|
Presence of Cholesterol in Non-Animal Organisms: Identification and Quantification of Cholesterol in Crude Seed Oil from Perilla frutescens and Dehydrated Pyropia tenera. Molecules 2021; 26:molecules26123767. [PMID: 34205624 PMCID: PMC8234223 DOI: 10.3390/molecules26123767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Studies have reported that cholesterol, a molecule found mainly in animals, is also present in some plants and algae. This study aimed to determine whether cholesterol exists in three dehydrated algae species, namely, Pyropia tenera, Saccharina japonica, and Undaria pinnatifida, and in one plant species, namely, Perilla frutescens (four perilla seed oil samples were analyzed). These species were chosen for investigation because they are common ingredients in East Asian cuisine. Gas chromatography-flame ionization detection (GC-FID) analysis found that cholesterol was present in P. tenera (14.6 mg/100 g) and in all four perilla seed oil samples (0.3–0.5 mg/100 g). High-performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD) also demonstrated that cholesterol was present in P. tenera (14.2 mg/100 g) and allowed the separation of cholesterol from its isomer lathosterol. However, cholesterol could not be detected by HPLC-ELSD in the perilla seed oil samples, most likely because it is only present in trace amounts. Moreover, liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the presence of cholesterol in both P. tenera and perilla seed oil. MRM results further suggested that lathosterol (a precursor of cholesterol) was present in P. tenera.
Collapse
|
7
|
Ohta-Shimizu M, Fuwa F, Tomitsuka E, Nishiwaki T, Aihara K, Sato S, Nakagawa S. New Inhibitory Effect of Latilactobacillus sakei UONUMA on the Cholesterol Biosynthesis Pathway in Human HepG2 Cells. Biol Pharm Bull 2021; 44:485-493. [PMID: 33790100 DOI: 10.1248/bpb.b20-00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many pharmaceuticals and dietary foods have been reported to inhibit cholesterol biosynthesis, mainly by inhibiting the presqualene enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase rather than a postsqualene enzyme. In this study, we examined the inhibitory effects of Latilactobacillus sakei UONUMA on cholesterol biosynthesis, especially postsqualene, in human HepG2 hepatoma cells. We quantified cholesterol and its precursors, and the mRNA and protein levels of enzymes involved in cholesterol biosynthesis. Three L. sakei UONUMA strains exhibited new inhibitory effects on cholesterol biosynthesis and inhibited the mRNA level of sterol-delta24-reductase (DHCR24), which is involved in the postsqualene cholesterol biosynthesis pathway. These strains will be useful for the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Miho Ohta-Shimizu
- Department of Bio-Analytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences
| | - Fumiko Fuwa
- Department of Bio-Analytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences
| | - Eriko Tomitsuka
- Department of Health Chemistry, Niigata University of Pharmacy and Applied Sciences
| | | | - Kotaro Aihara
- Niigata Agricultural Research Institute Food Research Center
| | - Shinji Sato
- Functional and Analytical Food Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Saori Nakagawa
- Department of Bio-Analytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences
| |
Collapse
|
8
|
A gas chromatography–mass spectrometry-based whole-cell screening assay for target identification in distal cholesterol biosynthesis. Nat Protoc 2019; 14:2546-2570. [DOI: 10.1038/s41596-019-0193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
|
9
|
Comparison of Strategies for the Determination of Sterol Sulfates via GC-MS Leading to a Novel Deconjugation-Derivatization Protocol. Molecules 2019; 24:molecules24132353. [PMID: 31247920 PMCID: PMC6651411 DOI: 10.3390/molecules24132353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Sulfoconjugates of sterols play important roles as neurosteroids, neurotransmitters, and ion channel ligands in health and disease. In most cases, sterol conjugate analysis is performed with liquid chromatography-mass spectrometry. This is a valuable tool for routine analytics with the advantage of direct sterol sulfates analysis without previous cleavage and/or derivatization. The complementary technique gas chromatography-mass spectrometry (GC-MS) is a preeminent discovery tool in the field of sterolomics, but the analysis of sterol sulfates is hampered by mandatory deconjugation and derivatization. Despite the difficulties in sample workup, GC-MS is an indispensable tool for untargeted analysis and steroid profiling. There are no general sample preparation protocols for sterol sulfate analysis using GC-MS. In this study we present a reinvestigation and evaluation of different deconjugation and derivatization procedures with a set of representative sterol sulfates. The advantages and disadvantages of trimethylsilyl (TMS), methyloxime-trimethylsilyl (MO-TMS), and trifluoroacetyl (TFA) derivatives were examined. Different published procedures of sterol sulfate deconjugation, including enzymatic and chemical cleavage, were reinvestigated and examined for diverse sterol sulfates. Finally, we present a new protocol for the chemical cleavage of sterol sulfates, allowing for simultaneous deconjugation and derivatization, simplifying GC-MS based sterol sulfate analysis.
Collapse
|
10
|
Allimuthu D, Hubler Z, Najm FJ, Tang H, Bederman I, Seibel W, Tesar PJ, Adams DJ. Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP. Cell Chem Biol 2019; 26:593-599.e4. [PMID: 30773481 DOI: 10.1016/j.chembiol.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Small molecules that promote oligodendrocyte formation have been identified in "drug repurposing" screens to nominate candidate therapeutics for diseases in which myelin is lost, including multiple sclerosis. We recently reported that many such molecules enhance oligodendrocyte formation not by their canonical targets but by inhibiting a narrow range of enzymes in cholesterol biosynthesis. Here we identify enhancers of oligodendrocyte formation obtained by screening a structurally diverse library of 10,000 small molecules. Identification of the cellular targets of these validated hits revealed a majority inhibited the cholesterol biosynthesis enzymes CYP51, TM7SF2, or EBP. In addition, evaluation of analogs led to identification of CW3388, a potent EBP-inhibiting enhancer of oligodendrocyte formation poised for further optimization.
Collapse
Affiliation(s)
- Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zita Hubler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Fadi J Najm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William Seibel
- Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC, Shick HE, Garrison E, T Karl M, Factor DC, Nevin ZS, Sax JL, Thompson MA, Fedorov Y, Jin J, Wilson WK, Giera M, Bracher F, Miller RH, Tesar PJ, Adams DJ. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 2018; 560:372-376. [PMID: 30046109 PMCID: PMC6423962 DOI: 10.1038/s41586-018-0360-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/03/2018] [Indexed: 01/08/2023]
Abstract
Regeneration of myelin is mediated by oligodendrocyte progenitor cells (OPCs), an abundant stem cell population in the CNS and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the central nervous system (CNS) underlies a number of neurological diseases, including multiple sclerosis (MS) and diverse genetic diseases1–3. Using high throughput chemical screening approaches, we and others have identified small molecules that stimulate oligodendrocyte formation from OPCs and functionally enhance remyelination in vivo4–10. Here we show a broad range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51 (cytochrome P450, family 51), TM7SF2, or EBP (emopamil binding protein), a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to OPCs in purified form while analogous sterols lacking this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism-of-action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.
Collapse
Affiliation(s)
- Zita Hubler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew S Elitt
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Elizabeth Shick
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eric Garrison
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Molly T Karl
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zachary S Nevin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joel L Sax
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew A Thompson
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jing Jin
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
12
|
Müller C, Hemmers S, Bartl N, Plodek A, Körner A, Mirakaj V, Giera M, Bracher F. New chemotype of selective and potent inhibitors of human delta 24-dehydrocholesterol reductase. Eur J Med Chem 2017; 140:305-320. [PMID: 28964935 DOI: 10.1016/j.ejmech.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 10/18/2022]
Abstract
The enzyme Δ24-dehydrocholesterol reductase (DHCR24) catalyzes the reduction of the Δ24-double bond in the side chain of cholesterol precursors. Recent biochemical investigations fuel the hope that inhibition of DHCR24, resulting in an accumulation of desmosterol, can open new therapeutic options for treating hepatitis C virus infections, certain forms of cancer and atherosclerosis. In turn, there is a high need for selective, potent and non-toxic inhibitors of DHCR24. Previous reports as well as our re-evaluation showed that established DHCR24 inhibitors are not suitable for this purpose. Based on the lathosterol-derived amide MGI-21 (IC50 823 nM for inhibition of overall cholesterol biosynthesis in HL-60 cells) we performed a systematic variation of the side chain functionality and identified the steroidal 3,22-diols 29 and 30, as well as several esters thereof, as extremely potent (IC50 < 5 nM), selective, and non-toxic DHCR24 inhibitors. In mice, diester 27 (SH-42) led to a significant increase in plasma desmosterol levels. The new inhibitors described here are valuable tools for investigating the therapeutic potential of DHCR24 inhibition.
Collapse
Affiliation(s)
- Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Sandra Hemmers
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Nicholas Bartl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Alois Plodek
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße, 72076 Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße, 72076 Tübingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
13
|
Fanter L, Müller C, Schepmann D, Bracher F, Wünsch B. Chiral-pool synthesis of 1,2,4-trisubstituted 1,4-diazepanes as novel σ1 receptor ligands. Bioorg Med Chem 2017; 25:4778-4799. [DOI: 10.1016/j.bmc.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
|
14
|
Antifungal drug testing by combining minimal inhibitory concentration testing with target identification by gas chromatography-mass spectrometry. Nat Protoc 2017; 12:947-963. [PMID: 28384139 DOI: 10.1038/nprot.2017.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungal infections and their increasing resistance to antibiotics are an emerging threat to public health. Novel antifungal drugs, as well technologies that can help us bolster the antimicrobial pipeline and understand resistance mechanisms, are needed. The ergosterol biosynthetic pathway is one potential target for antifungal drugs. Here we describe how antifungal susceptibility testing can be combined with target identification in distal ergosterol biosynthesis by means of gas chromatography-mass spectrometry. The fungi are treated with sublethal doses of active components that block ergosterol biosynthesis, and the ergosterol biosynthesis intermediates are analyzed in a targeted metabolomics manner after derivatization (trimethylsilylation). Drug treatment results in distinct sterol patterns that are characteristic of the affected enzyme. Sterol identification based on relative retention times and electron ionization (EI) mass spectra, as well as semiquantitative assessment of ergosterol intermediates, is described. The protocol is applicable to yeasts and molds. The overall analysis time from incubation to test result is not more than 3 d. The assay can be used to determine whether an antifungal compound of interest targets sterol biosynthesis, and, if so, to determine which enzyme in the pathway it targets.
Collapse
|
15
|
Müller C, Binder U, Maurer E, Grimm C, Giera M, Bracher F. Fungal sterol C22-desaturase is not an antimycotic target as shown by selective inhibitors and testing on clinical isolates. Steroids 2015; 101:1-6. [PMID: 26022150 DOI: 10.1016/j.steroids.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
Inhibition of concise enzymes in ergosterol biosynthesis is one of the most prominent strategies for antifungal chemotherapy. Nevertheless, the enzymes sterol C5-desaturase and sterol C22-desaturase, which introduce double bonds into the sterol core and side chain, have not been fully investigated yet for their potential as antifungal drug targets. Lathosterol side chain amides bearing N-alkyl groups of proper length are known as potent inhibitors of the enzymes sterol C5-desaturase and sterol Δ(24)-reductase in mammalian cholesterol biosynthesis. Here we present the results of our evaluation of these amides for their ability to inhibit enzymes in fungal ergosterol biosynthesis. In the presence of inhibitor(s) an accumulation of sterols lacking a double bond at C22/23 (mainly ergosta-5,7-dien-3β-ol) was observed in Candida glabrata, Saccharomyces cerevisiae, and Yarrowia lipolytica. Hence, the lathosterol side chain amides were identified as selective inhibitors of the fungal sterol C22-desaturase, which was discussed as a specific target for novel antifungals. One representative inhibitor, (3S,20S)-20-N-butylcarbamoylpregn-7-en-3β-ol was subjected to antifungal susceptibility testing on patient isolates according to modified EUCAST guidelines. But, the test organisms showed no significant reduction of cell growth and/or viability up to an inhibitor concentration of 100μg/mL. This leads to the conclusion that sterol C22-desaturase is not an attractive target for the development of antifungals.
Collapse
Affiliation(s)
- Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Elisabeth Maurer
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Christian Grimm
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|