1
|
Zhou D, Luo Q, Zeng Q, Zheng Y, Ren X, Gao D, Fu Q, Zhang K, Xia Z, Wang L. Preparation of an aminophenylboronic acid and N-isopropyl acrylamide copolymer functionalized stationary phase for mixed-mode chromatography. J Chromatogr A 2020; 1627:461423. [DOI: 10.1016/j.chroma.2020.461423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022]
|
2
|
Peng M, Yuan S, Shi X, Lu X. Preparation of multiresponsive nanogel and its application in noninvasive glucose naked eye detection. J Appl Polym Sci 2019. [DOI: 10.1002/app.47933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyuan Peng
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 2170552 People's Republic of China
| | - Sixiang Yuan
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 2170552 People's Republic of China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 2170552 People's Republic of China
| | - Xihua Lu
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 2170552 People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci & Tech Co. Ltd 1188 Xihu 1st Road, Tongling, Economic and Technological Development Area Anhui 244000 China
| |
Collapse
|
3
|
Sun W, Dai R, Li B, Dai G, Wang D, Yang D, Chu P, Deng Y, Luo A. Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis. Molecules 2019; 24:E2626. [PMID: 31330945 PMCID: PMC6680567 DOI: 10.3390/molecules24142626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
We have developed a methodology to capture acidic proteins, alkaline proteins, and glycoproteins separately in mouse serum using a combination of three functionalized temperature-responsive chromatographic stationary phases. The temperature-responsive polymer poly(N-isopropylacrylamide) was attached to the stationary phase, silica. The three temperature-responsive chromatographic stationary phase materials were prepared by reversible addition-fragmentation chain transfer polymerization. Alkaline, acidic, and boric acid functional groups were introduced to capture acidic proteins, alkaline proteins, and glycoproteins, respectively. The protein enrichment and release properties of the materials were examined using the acidic protein, bovine serum albumin; the alkaline protein, protamine; and the glycoprotein, horseradish peroxidase. Finally, the three materials were used to analyze mouse serum. Without switching the mobile phase, the capture and separation of mouse serum was achieved by the combination of three temperature-responsive chromatographic stationary phase materials. On the whole, 313 proteins were identified successfully. The number of different proteins identified using the new method was 1.46 times greater than the number of proteins that has been identified without applying this method. To our knowledge, this method is the first combinatorial use of three functionalized temperature-responsive chromatographic stationary phase silica materials to separate proteins in mouse serum.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guoxin Dai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Di Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dandan Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pingping Chu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
Synthesis and Antibacterial Activities of Boronic Acid-Based Recyclable Spherical Polymer Brushes. Macromol Res 2019. [DOI: 10.1007/s13233-019-7084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Effect of a functional polymer on the rheology and microstructure of sodium alginate. Carbohydr Polym 2018; 199:58-67. [DOI: 10.1016/j.carbpol.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 07/02/2018] [Indexed: 01/25/2023]
|
6
|
Zheng H, Li X, Jia Q. Design of pH-Responsive Polymer Monolith Based on Cyclodextrin Vesicle for Capture and Release of Myoglobin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5909-5917. [PMID: 29364646 DOI: 10.1021/acsami.7b18999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
β-Cyclodextrin vesicles (CDVs) were first introduced into the polymer monolith to prepare a pH-responsive adsorption material and used for capture and release of a cardiac biomarker, myoglobin (Myo). SH-CDV was decorated with adamantane-modified SH-octapeptide to enhance the encapsulation and release rates of Myo. Afterward, SH-CDV was introduced into the polymer monolith via click reaction to produce a pH-responsive monolith. Combining with the mass spectrometry detection, the CDV-based pH-responsive monolith was used for the enrichment of Myo glycopeptides from the mixture of glycopeptides and nonglycoprotein (bovine serum albumin) tryptsin digests reach up to 1:10 000. A limit of detection of 0.1 fmol was obtained for Myo glycopeptides in the blood sample, indicating the high sensitivity of the method. The prepared CDV-based hybrid monolith demonstrated itself to be a promising material for capture of glycoproteins in complex samples, which provides an efficient strategy for the identification and discovery of biomarkers of acute myocardial infarction.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry, Jilin University , Changchun 130012, China
| | - Xiqian Li
- China-Japan Hospital of Jilin University , Changchun 130033, China
| | - Qiong Jia
- College of Chemistry, Jilin University , Changchun 130012, China
| |
Collapse
|
7
|
Guo T, Deng Q, Fang G, Yun Y, Hu Y, Wang S. A double responsive smart upconversion fluorescence sensing material for glycoprotein. Biosens Bioelectron 2016; 85:596-602. [PMID: 27236725 DOI: 10.1016/j.bios.2016.05.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
Abstract
A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.
Collapse
Affiliation(s)
- Ting Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiliang Deng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongjin Hu
- Institute of Food Science and Technology, Yunnan Agricultural University, Yunnan 650201, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Vancoillie G, Hoogenboom R. Synthesis and polymerization of boronic acid containing monomers. Polym Chem 2016. [DOI: 10.1039/c6py00775a] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This mini-review summarizes the most commonly used methods for the synthesis of phenylboronic acid-(co)polymers ranging from simple straightforward polymerization to complex post-polymerization modification.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
9
|
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 2015; 44:8097-123. [PMID: 26377373 DOI: 10.1039/c5cs00013k] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.
Collapse
Affiliation(s)
- Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | | | |
Collapse
|