1
|
Cao H, Li Y, Feng J, Cao Y, Xiang Y, Li Y. Boronic acid-functionalized magnetic covalent organic frameworks based solid-phase extraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry for the determination of trace gentamicin residues in milk. Talanta 2024; 279:126678. [PMID: 39116731 DOI: 10.1016/j.talanta.2024.126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Boric acid-functionalized magnetic covalent organic frameworks (Fe3O4-TpBD-B) with large surface area and high porosity were prepared and applied for magnetic solid-phase extraction adsorbent of gentamicin from milk before UPLC-MS/MS detection. By utilizing a new HILIC chromatographic column with zwitterionic sulfoalkyl betaine stationary phase based on ethyl bridged hybrid particles (BEH), isomers of gentamicin (C1, C1a, and C2+C2a components). The developed methods demonstrated good linearity (R2 > 0.99), acceptable accuracy and good precision (<10 %), and low limit of quantitation (1.59 ng mL⁻1 for C1, 1.52 ng mL⁻1 for C1a and 2.72 ng mL⁻1 for C2+C2a). In addition, this method has been effectively applied to the analysis of real milk samples.
Collapse
Affiliation(s)
- Hao Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianan Feng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, 201318, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Shanghai, 200040, China
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201203, China.
| |
Collapse
|
2
|
de Sá FAP, Andrade JFM, Miranda TC, Cunha-Filho M, Gelfuso GM, Lapteva M, Kalia YN, Gratieri T. Enhanced topical paromomycin delivery for cutaneous leishmaniasis treatment: Passive and iontophoretic approaches. Int J Pharm 2023; 648:123617. [PMID: 37977289 DOI: 10.1016/j.ijpharm.2023.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Conventional treatments for cutaneous leishmaniasis, a neglected vector-borne infectious disease, can frequently lead to serious adverse effects. Paromomycin (PAR), an aminoglycoside antibiotic, has been suggested for the topical treatment of disease-related lesions, but even when formulated in high drug-loading dosage forms, presents controversial efficacy. The presence of five ionizable amino groups hinder its passive cutaneous penetration but make PAR an excellent candidate for iontophoretic delivery. The objective of this study was to verify the feasibility of using iontophoresis for cutaneous PAR delivery and to propose a topical passive drug delivery system that could be applied between iontophoretic treatments. For this, in vitro iontophoretic experiments evaluated different application durations (10, 30, and 360 min), current densities (0.1, 0.25, and 0.5 mA/cm2), PAR concentrations (0.5 and 1.0 %), and skin models (intact and impaired porcine skin). In addition, 1 % PAR hydrogel had its penetration profile compared to 15 % PAR ointment in passive transport. Results showed iontophoresis could deliver suitable PAR amounts to dermal layers, even in short times and with impaired skin. Biodistribution assays showed both iontophoretic transport and the proposed hydrogel delivered higher PAR amounts to deeper skin layers than conventional ointment, even though applying 15 times less drug. To our knowledge, this is the first report of PAR drug delivery enhancement by iontophoresis. In summary, the association of iontophoresis with a topical application of PAR gel seems appropriate for improving cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Fernando A P de Sá
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900, Brasília, DF, Brazil
| | - Jayanaraian F M Andrade
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900, Brasília, DF, Brazil
| | - Thamires C Miranda
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900, Brasília, DF, Brazil
| | - Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Taís Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
3
|
An Aptamer Affinity Column for Extraction of Four Aminoglycoside Antibiotics from Milk. SEPARATIONS 2022. [DOI: 10.3390/separations9100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This article introduces the aptamer affinity column (AAC) with nucleic acid aptamer as an affinity ligand for the extraction of four aminoglycoside antibiotics (AGs). The AAC was prepared by loading the aptamer functionalized Sepharose into an extraction column, which was conjugated by covalent binding between NHS-activated Sepharose and amino-modified aptamers with a coupling time of 2 h. After the sample solution flowed through the AAC, the AGs were retained because of the affinity between the AGs and aptamer, then AGs were eluted and analyzed by UPLC-MS/MS. Under the optimized conditions, the maximum adsorption of AGs on the AAC could reach 8.0 μg. Moreover, the proposed AAC could be reused more than 20 times. The resultant AAC that conjugated with the aptamer was successfully applied in the enrichment and purification of four AGs in a milk sample and good recovery results in the range of 83.3–98.8% were obtained (with RSD in the range of 0.6–5.8%). The proposed AAC for recognition of multi-target AGs exhibited good enrichment and purification effects, showing great application potential for targets with their related aptamers.
Collapse
|
7
|
Qiu J, Liu Q, Zhang M, Li X, Zhang J, Xiong R, He L. Simultaneous Determination of Aminoglycoside Residues in Environmental Water Matrices by Lyophilization Combined with Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1734606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jingli Qiu
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qingying Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Meiyu Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuezhi Li
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahui Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Renping Xiong
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Liu KY, Zhang JJ, Geng ML, Zhu YT, Liu XJ, Ding P, Wang BL, Liu WW, Liu YH, Tao FB. A Stable Isotope Dilution Assay for Multi-class Antibiotics in Pregnant Urines by LC–MS/MS. Chromatographia 2020. [DOI: 10.1007/s10337-020-03866-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
FUJII Y, KAGA T, NISHIMURA K. Simultaneous Determination of Aminoglycoside Residues in Livestock and Fishery Products by Phenylboronic Acid Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. ANAL SCI 2019; 35:961-966. [DOI: 10.2116/analsci.19p065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Synthesis of magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls for selective and efficient residue analysis of aminoglycosides in milk. Food Chem 2018; 239:612-621. [DOI: 10.1016/j.foodchem.2017.06.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 05/12/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022]
|
12
|
Evaluation of hydrophilic interaction liquid chromatography–tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods. Talanta 2017; 171:74-80. [DOI: 10.1016/j.talanta.2017.04.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/03/2023]
|