Zhao X, He Y, Wang Y, Wang S, Wang J. Hollow molecularly imprinted polymer based quartz crystal microbalance sensor for rapid detection of methimazole in food samples.
Food Chem 2019;
309:125787. [PMID:
31771917 DOI:
10.1016/j.foodchem.2019.125787]
[Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
In this study, a novel detection method of methimazole was proposed based on the hollow molecularly imprinted quartz crystal microbalance (QCM) sensor, in which the hollow imprinted polymers (H-MIPs) were firstly prepared through the surface imprinted techniques, using hollow silica spheres as matrix supporting material and methimazole as template molecule. The characterizations of H-MIPs were carefully studied. Compared with traditional MIPs, H-MIPs exhibited faster mass transfer rate and higher adsorption capacity. After coating onto the surface of Au chip, the H-MIPs QCM sensor was fabricated. Based on the frequency shift, good linear behavior in the range of 5-70 μg L-1, limit of detection of 3 μg L-1, and good recoveries of 88.32%-107.96% in the spiked pork, beef and milk were obtained. The analysis process could complete within 8 min. The developed sensor provided an effective, fast and accurate method for the methimazole detection in food samples.
Collapse