1
|
Asokan K, Hussain AZ, Gattu RK, Ilangovan A. Minor limonoid constituents from Swietenia macrophylla by simultaneous isolation using supercritical fluid chromatography and their biological activities. RSC Adv 2024; 14:26637-26647. [PMID: 39175675 PMCID: PMC11339773 DOI: 10.1039/d4ra03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
This study reports simultaneous isolation of three new limonoids (1-3), six known regio isomers (6, 7, 9-12), and three more known limonoids (4, 5, 8) from Swietenia macrophylla (S. macrophylla) seeds. Structures of these compounds were determined via extensive study of their 1D/2D-NMR and mass spectral data. Known limonoids (4-12) were identified by comparing their physical and spectroscopic data with literature values. A novel environmentally friendly supercritical fluid chromatography (SFC) technique facilitated simultaneous and rapid separation of these compounds. The pharmacological activities of the new limonoids were investigated.
Collapse
Affiliation(s)
- Kathiravan Asokan
- Aragen Life Sciences Pvt Ltd Bengaluru-562106 India
- Department of Chemistry, Jamal Mohamed College Tiruchirappalli Tamilnadu-620020 India
| | - A Zahir Hussain
- Department of Chemistry, Jamal Mohamed College Tiruchirappalli Tamilnadu-620020 India
| | | | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| |
Collapse
|
2
|
Khater S, Ferguson P, Grand-Guillaume-Perrenoud A. Method development approaches for small-molecule analytes. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Jambo H, Hubert P, Dispas A. Supercritical fluid chromatography for pharmaceutical quality control: Current challenges and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Jambo H, Dispas A, Hubert C, Lecomte F, Ziemons É, Hubert P. Generic SFC-MS methodology for the quality control of vitamin D 3 oily formulations. J Pharm Biomed Anal 2021; 209:114492. [PMID: 34864591 DOI: 10.1016/j.jpba.2021.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Vitamin D3 is a key micronutrient whose intakes are inadequate for most populations worldwide. Supplementation with medicines or food supplements is commonly prescribed to correct this imbalance and the quality of these products must be ensured. In this context, a generic methodology for the assay of vitamin D3 in oily formulations is proposed using supercritical fluid chromatography coupled to mass spectrometry (SFC-MS). It is in line with green analytical chemistry principles and combines the use of i) a fast and robust analytical method (4.0 min analysis time) ii) an easy sample preparation compatible with high throughput analysis ("dilute-and-shoot" approach) and iii) a relevant control strategy. Seventeen products from multiple manufacturers and encompassing a large content range were evaluated in this study. They were classified in four groups to streamline their processing considering the use of a matrix-matched calibration procedure. Matrix effect was thoroughly studied and was found to be low (99-106%), stable intra/inter-series and comparable between the different groups and types of matrices. The implemented control strategy was based on a three-level system suitability tests (SST). Level 1 SST: resolution of the critical pair that was above 1.5 for all analysis series. Level 2 SST: evaluation of the adequacy of the calibration for a QC sample in terms of recovery that was between 97% and 104% with a variability between 1% and 2%. Level 3 SST: method trueness that was between 95% and 102%. Sample analysis highlighted differences in types of products and dosage forms. This is the first study to propose a complete strategy for the quality control of vitamin D3 oily formulations and should prove useful in QC laboratories.
Collapse
Affiliation(s)
- Hugues Jambo
- University of Liège (ULiège), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium.
| | - Amandine Dispas
- University of Liège (ULiège), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium; University of Liège (ULiège), CIRM, Laboratory for the Analysis of Medicines, Liège, Belgium
| | - Cédric Hubert
- University of Liège (ULiège), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| | - Frédéric Lecomte
- University of Liège (ULiège), CIRM, Department of Pharmaceutical Sciences, Liège, Belgium
| | - Éric Ziemons
- University of Liège (ULiège), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| | - Philippe Hubert
- University of Liège (ULiège), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| |
Collapse
|
5
|
Vervoort N, Goossens K, Baeten M, Chen Q. Recent advances in analytical techniques for high throughput experimentation. ANALYTICAL SCIENCE ADVANCES 2021; 2:109-127. [PMID: 38716456 PMCID: PMC10989611 DOI: 10.1002/ansa.202000155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2024]
Abstract
High throughput experimentation is a growing and evolving field that allows to execute dozens to several thousands of experiments per day with relatively limited resources. Through miniaturization, typically a high degree of automation and the use of digital data tools, many parallel reactions or experiments at a time can be run in such workflows. High throughput experimentation also requires fast analytical techniques capable of generating critically important analytical data in line with the increased rate of experimentation. As traditional techniques usually do not deliver the speed required, some unique approaches are required to enable workflows to function as designed. This review covers the recent developments (2019-2020) in this field and was intended to give a comprehensive overview of the current "state-of-the-art."
Collapse
Affiliation(s)
- Nico Vervoort
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Karel Goossens
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Mattijs Baeten
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Qinghao Chen
- Chemical Process R&DHigh Throughput ExperimentationJanssen R&DBeerseBelgium
| |
Collapse
|
6
|
Analysis of the Stereoisomers (cis, trans) of Polyhedral Oligomeric Silsesquioxane Compounds by UHPSFC-QTof MS. Chromatographia 2020. [DOI: 10.1007/s10337-020-03859-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kaplitz AS, Kresge GA, Selover B, Horvat L, Franklin EG, Godinho JM, Grinias KM, Foster SW, Davis JJ, Grinias JP. High-Throughput and Ultrafast Liquid Chromatography. Anal Chem 2019; 92:67-84. [DOI: 10.1021/acs.analchem.9b04713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander S. Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Glenn A. Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Benjamin Selover
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Leah Horvat
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | | | - Justin M. Godinho
- Advanced Materials Technology, Inc., Wilmington, Delaware 19810, United States
| | - Kaitlin M. Grinias
- Analytical Platforms & Platform Modernization, GlaxoSmithKline, Upper Providence, Collegeville, Pennsylvania 19426, United States
| | - Samuel W. Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joshua J. Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James P. Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
8
|
He PX, Zhang Y, Zhou Y, Li GH, Zhang JW, Feng XS. Supercritical fluid chromatography-a technical overview and its applications in medicinal plant analysis: an update covering 2012-2018. Analyst 2019; 144:5324-5352. [PMID: 31348475 DOI: 10.1039/c9an00826h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medicinal plants with complex matrices are endowed with a wide scope of biological activities. The separation, quantification, characterization and purification of bioactive components from herbal medicine extracts have always challenged analysts. Fortunately, the advancement of various emerging techniques has provided potent support for improving the method selectivity, sensitivity and run speeds in medicinal plant analyses. In recent years, the advent of new-generation supercritical fluid chromatography (SFC) instruments and a wide diversity of column chemistries, coupled with the intrinsic technical features of SFC, have made it an alternative and prominent analytical platform in the medicinal plant research area. This work aims to give a comprehensive overview of the fundamentals, technical advancement and investigating parameters of SFC in combination with three prevalent detectors. Moreover, the latest research progress of SFC applications in medicinal plant analyses is illuminated, with focus on herbal medicine-related SFC papers on the analytical and preparative scale that were published during the period of 2012 to December 2018. The most relevant applications were classified based on the constituents to be analysed. As for the respective research cases, analytical protocols and data processing strategies were provided, along with the indicated restrictions or superiority of the method; thus, the current status of SFC in medicinal plant analysis was presented.
Collapse
Affiliation(s)
- Pei-Xia He
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Recognising the Rising Stars of Separation Science. Chromatographia 2019. [DOI: 10.1007/s10337-018-3674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|