1
|
Wang K, Dong Y, Bai X, Zhao X, Zhao R, Zhou J, Yu H, Li L, Tang H, Ma Y. A water-stable Zn (II) coordination polymer as a fluorescence sensor for multifunctional detection of Cefixime in milk, honey, beef and chicken. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
2
|
Li H, Geng W, Qi Z, Ahmad W, Haruna SA, Chen Q. Stimuli-responsive SERS biosensor for ultrasensitive tetracycline sensing using EDTA-driven PEI@CaCO 3 microcapsule and CS@FeMMs. Biosens Bioelectron 2023; 226:115122. [PMID: 36796305 DOI: 10.1016/j.bios.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
In this work, a stimuli-responsive SERS biosensor was fabricated for tetracycline (TTC) by "signal-on" strategy using (EDTA)-driven polyethyleneimine grafted calcium carbonate (PEI@CaCO3) microcapsule and chitosan-Fe magnetic microbeads (CS@FeMMs). Initially, aptamer conjugated magnetic-bead CS@FeMMs@Apt with superparamagnetism and excellent biocompatibility was employed as capture probe, which facilitated the rapid and easy magnetic separation. Subsequently, the PEI cross-linked layer and aptamer network layer were constructed onto the outer layer of CaCO3@4-ATP microcapsule to form sensing probes (PEI@CaCO3@4-ATP@Apt) via the layer-by-layer assembly method. In the presence of TTC, a sandwich SERS-assay was exploited by aptamer recognition induced target-bridged strategy. When the solution of EDTA was added, the core layer of CaCO3 would be dissolved quickly, destroying the microcapsule to release 4-ATP. The released 4-ATP could be quantitatively monitored by dripping the supernatant onto the AuNTs@PDMS SERS platform, resulting in a strong Raman "signal-on". Under the optimal conditions, a good linear relationship was established with a correlation coefficient (R2) of 0.9938 and a LOD of 0.03 ng/mL. Additionally, the application capacity of the biosensor to detect TTC was also affirmed in food matrixes, and the results were consistent with the standard ELISA method (P > 0.05). Hence, this SERS biosensor affords extensive application prospects for TTC detection with multiple merits such as high sensitivity, environment friendliness, and high stability.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenhui Geng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhixiong Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
3
|
Van Schepdael A. Capillary electrophoresis as a simple and low-cost analytical tool for use in money-constrained situations. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
A label-free PEC aptasensor platform based on g-C3N4/BiVO4 heterojunction for tetracycline detection in food analysis. Food Chem 2023; 402:134258. [DOI: 10.1016/j.foodchem.2022.134258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
|
5
|
Chen Y, Tang Y, Liu Y, Zhao F, Zeng B. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128907. [PMID: 35452985 DOI: 10.1016/j.jhazmat.2022.128907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Oxytetracycline (OTC) residue in food and environment has potential threats to ecosystem and human health, thus its sensitive monitoring and effective elimination are very important. In this work, a new molecularly imprinted polymer (MIP) composite was prepared through atom transfer radical polymerization by using OTC as template, gold nanoparticles modified carbon nanospheres (Au-CNS) as supporter, ionic liquids (IL) as functional monomer and cross-linking agent. The obtained MIP-IL@Au-CNS composite was characterized by Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. It displayed high imprinting factor (5.50) and adsorption capacity (56.7 mg g-1), and could achieved the adsorption equilibrium in short time (about 15 min). Results also illustrated that the adsorption process basically conformed to the quasi-second-order kinetic model and Freundlich model, and MIP-IL@Au-CNS could be recycled at least 5 times. Furthermore, a sensitive OTC electrochemical sensor was developed by combining MIP-IL@Au-CNS with IL-modified carbon nanocomposites (IL@N-rGO-MWCNT). The resulting sensor demonstrated a linear response to OTC in the wide range of 0.02-20 μM, and the detection limit was down to 5 nM. It also had the advantages of high selectivity, fast elution/regeneration and simple construction procedure. The sensor had been applied to the detection of real samples, and acceptable recovery (96.4%-106%) and RSD (3.2%-6.2%) were obtained. This work expands the application of IL-based MIP in pollutant monitoring and enriching.
Collapse
Affiliation(s)
- Yanran Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
6
|
Zhou J, Xu Z. Simultaneous separation of 12 different classes of antibiotics under the condition of complete protonation by capillary electrophoresis-coupled contactless conductivity detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:174-179. [PMID: 34935007 DOI: 10.1039/d1ay01838h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel capillary electrophoresis - capacitively coupled contactless conductivity detection (CE-C4D) method for the separation of 12 antibiotics, including four types of aminoglycosides, three types of fluoroquinolones, two types of tetracyclines, and three types of macrolides, was developed. Half of these antibiotics were not determined by ultraviolet (UV) because of their lack of UV-absorbing groups. Formic acid (FA) (pH 2.50) with low conductivity was employed as the background electrolyte (BGE) in comparison with three BGE systems (i.e., HAc, HCl and H3PO4), which not only allowed complete protonation and electrophoresis separation but provided more cost-effectiveness and shorter analysis time. Under these conditions, a UV detector was employed as an additional detection mode to evaluate the qualitative analysis of 6 antibiotics possessing UV absorbing groups. Moreover, it was found that the sensitivities of the C4D and UV detectors were similar. Albeit a slightly reduced sensitivity of C4D in the analysis of norfloxacin, enrofloxacin and tylosin compared to UV, enough points were achieved to detect all analytes by C4D. The repeatability with respect to peak areas and migration times was better than 4.69% and 2.48% (n = 5), respectively. Mixed liquid pharmaceutical formulations of tobramycin eye drops having non-UV absorbing groups and ofloxacin eye drops possessing UV absorbing groups have been separated and detected in a single run by this technique. The studied recoveries of the two were 100% and 103%, respectively.
Collapse
Affiliation(s)
- Jianjing Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Zhongqi Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
7
|
Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020. J Chromatogr A 2020; 1632:461616. [PMID: 33096295 DOI: 10.1016/j.chroma.2020.461616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
The developments of analytical contactless conductivity measurements based on capacitive coupling over the two years from mid-2018 to mid-2020 are covered. This mostly concerns applications of the technique in zone electrophoresis employing conventional capillaries and to a lesser extent lab-on-chip devices. However, its use for the detection in several other flow-based analytical methods has also been reported. Detection of bubbles and measurements of flow rates in two-phase flows are also recurring themes. A few new applications in stagnant aqueous samples, e.g. endpoint detection in titrations and measurement on paper-based devices, have been reported. Some variations of the design of the measuring cells and their read-out electronics have also been described.
Collapse
Affiliation(s)
- Peter C Hauser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland.
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
8
|
Elbashir AA, Elgorashe REE, Alnajjar AO, Aboul-Enein HY. Application of Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (CE-C 4D): 2017-2020. Crit Rev Anal Chem 2020; 52:535-543. [PMID: 32835492 DOI: 10.1080/10408347.2020.1809340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Capacitively coupled contactless conductivity detection (C4D) has emerged as influential to detect analytes that do not have chromogenic or fluorogenic functional group. Since our last review several new capillary electrophoresis (CE) methods coupled with (CE-C4D) have been communicated. The aim of this review is to give an update of the almost all the new applications of CE-C4D in the field of pharmaceutical, food and biomedical analysis covering the period from 2017 to April 2020. The utilization of CE with C4D in the areas of pharmaceutical, food and biomedical analysis is presented. Finally, concluding remarks and outlooks are discussed.
Collapse
Affiliation(s)
- Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | | | - Ahmed O Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|