1
|
Kelani KM, Fekry RA, Fayez YM, Hassan SA. Advanced chemometric methods for simultaneous quantitation of caffeine, codeine, paracetamol, and p-aminophenol in their quaternary mixture. Sci Rep 2024; 14:2085. [PMID: 38267465 PMCID: PMC10808474 DOI: 10.1038/s41598-024-52450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Two different multivariate techniques have been applied for the quantitative analysis of caffeine, codeine, paracetamol and p-aminophenol (PAP) in quaternary mixture, namely, Partial Least Squares (PLS-1) and Artificial Neural Networks (ANN). For suitable analysis, a calibration set of 25 mixtures with various ratios of the drugs and PAP impurity were established using a 4-factor 5-level experimental design. The most meaningful wavelengths for the chemometric models were chosen using Genetic Algorithm (GA) as a variable selection technique. By using an independent validation set, the validity of the proposed methods was evaluated. A comparative study was established between the three multivariate models (PLS-1, GA-PLS and GA-ANN). The comparison between the various models revealed that the GA-ANN model was superior at resolving the highly overlapped spectra of this quaternary combination. The drugs were successfully quantified in their pharmaceutical dosage form utilizing the GA-ANN models.
Collapse
Affiliation(s)
- Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Reham A Fekry
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-Hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt
| | - Yasmin M Fayez
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Said A Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Kelani KM, Fayez YM, Abdel-Raoof AM, Fekry RA, Hassan SA. Development of an eco-friendly HPLC method for the stability indicating assay of binary mixture of ibuprofen and phenylephrine. BMC Chem 2023; 17:141. [PMID: 37876006 PMCID: PMC10598928 DOI: 10.1186/s13065-023-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The development and validation of the stability indicating HPLC technique has contributed to the understanding of the stability profile of ibuprofen (IBU) and phenylephrine (PHE). Stability profile was achieved for PHE; the drug was found to be liable to be influenced by stress oxidative conditions; two oxidative degradants (Deg1 & Deg2) were formed and their structures were confirmed using IR and mass spectrometry. The drugs and degradation products were successfully separated using a gradient elution method on YMC-C8 column with 0.1% hexanesulfonic acid and acetonitrile as a mobile phase at pH 6.6. The flow rate was 1.0 mL/min, and a diode array detector operating at 220 nm was used for UV detection. The retention times of degradants Deg1, Deg2, ibuprofen (IBU), and phenylephrine hydrochloride (PHE) were 2.0, 2.2, 3.2 and 7.0 min, respectively. The proposed method was validated with respect to linearity, accuracy, precision, specificity, and robustness using ICH guidelines. The linearities of ibuprofen and phenylephrine hydrochloride were in the range of 10-100 μg/mL and 0.3-10 μg/mL, respectively. The % recoveries of the two drugs were found to be 100.75 ± 1.44%, 99.67% ± 1.67, and the LOD was found to be 2.75/mL and 0.09/mL for IBU, and PHE, respectively. The method was successfully applied to the estimation of ibuprofen and phenylephrine hydrochloride combination in pharmaceutical dosage form. The proposed technique was validated using ICH guidelines and its greenness was assessed according to Analytical Eco Scale metric (AES). Molecular docking was used to assess the two drugs and PHE oxidative degradants interaction with the stationary phase and to confirm the outcomes of the proposed method with regard to the order of elution of the two drugs and PHE degradation products. Eco-friendly and environmental safety were assessed through the application of one of the most applicable greenness assessment tool; Analytical Eco Scale metric (AES).
Collapse
Affiliation(s)
- Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Yasmin M Fayez
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Ahmed M Abdel-Raoof
- Analytical Chemistry Department, Faculty of Pharmacy (Boys), AL-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Reham A Fekry
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt.
| | - Said A Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, P.O. Box 77, 6th of October City, Egypt
| |
Collapse
|
3
|
Jahani M, Fazly Bazzaz BS, Akaberi M, Rajabi O, Hadizadeh F. Recent Progresses in Analytical Perspectives of Degradation Studies and Impurity Profiling in Pharmaceutical Developments: An Updated Review. Crit Rev Anal Chem 2022; 53:1094-1115. [PMID: 35108132 DOI: 10.1080/10408347.2021.2008226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Forced degradation studies have been used to simplify analytical methodology development and achieve a deeper knowledge about the inherent stability of active pharmaceutical ingredients (API) and drug products. This provides insight into degradation species and pathways. Identification of impurities in pharmaceutical products is closely related to the selection of the most appropriate analytical methods like HPLC-UV, LC-MS/MS, LC-NMR, GC-MS, and capillary electrophoresis. Herein, recent trends in analytical perspectives during 2018-April 14, 2021, are discussed based on forced and impurity degradation profiling of pharmaceuticals. Literature review showed that several methods have been used for experimental design and analysis conditions such as matrix type, column type, mobile phase, elution modes, detection wavelengths, and therapeutic category. Thus, since these factors influence the separation and identification of the impurities and degradation products, we attempted to perform a statistical analysis for the developed methods according to the abovementioned factors.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Keyvan K, Sohrabi MR, Motiee F. Improved spectral resolution for the rapid simultaneous spectrophotometric determination of sofosbuvir and daclatasvir as anti hepatitis C virus drugs in pharmaceutical formulation and biological fluid using continuous wavelet and derivative transform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119429. [PMID: 33477087 DOI: 10.1016/j.saa.2021.119429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, the simultaneous spectrophotometric estimation of Sofosbuvir (SOF) and Daclatasvir (DAC) in synthetic mixtures and tablet formulation in the presence of overlapping spectra was performed based on continuous wavelet transform (CWT) and derivative spectrophotometry (DS) methods without any separation process. The Coiflet (Coif2) and Daubechies (Db3) wavelet families with wavelength of 256 nm and 218 nm were obtained as the best families for the simultaneous determination of SOF and DAC, respectively. Also, the first derivative absorption spectra revealed the best results corresponding to the analysis of SOF and DAC at 237 nm and 291 nm, respectively. The ranges of limit of detection (LOD) and limit of quantitation (LOQ) related to the CWT and DS methods were 2.45 × 10-3 to 0.5054 and 6.91 × 10-3 to 0.6027, respectively. Mean recovery values of SOF and DAC in synthetic mixtures for CWT approach were 98.55%, 98.09% and in DS method were 98.78% and 95.83%, respectively. Real samples, including Sovodak tablet and urine was used for accurate simultaneous determination of the mentioned components. Analyzing Sovodak tablet was implemented using high-performance liquid chromatography (HPLC) as a reference method that the results were near to the CWT and DS methods. In order to investigate the existence of significant differences between the methods, analysis of variance (ANOVA) test at the 95% confidence level was performed but no significant differences were observed. In addition, the amounts of SOF and DAC in the complex matrix of biological sample were well predicted by the proposed methods.
Collapse
Affiliation(s)
- Kiarash Keyvan
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Fereshteh Motiee
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Gad MA, Amer SM, Zaazaa HE, Hassan SA. Strategies for stabilizing formulation and QbD assisted development of robust stability indicating method of azilsartan medoxomil/chlorthalidone. J Pharm Biomed Anal 2020; 178:112910. [DOI: 10.1016/j.jpba.2019.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|