1
|
Curzel F, Tillmann B, Ferreri L. Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain Cogn 2024; 180:106200. [PMID: 38908228 DOI: 10.1016/j.bandc.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Research investigating the neural processes related to music perception and production constitutes a well-established field within the cognitive neurosciences. While most neuroimaging tools have limitations in studying the complexity of musical experiences, functional Near-Infrared Spectroscopy (fNIRS) represents a promising, relatively new tool for studying music processes in both laboratory and ecological settings, which is also suitable for both typical and pathological populations across development. Here we systematically review fNIRS studies on music cognition, highlighting prospects and potentialities. We also include an overview of fNIRS basic theory, together with a brief comparison to characteristics of other neuroimaging tools. Fifty-nine studies meeting inclusion criteria (i.e., using fNIRS with music as the primary stimulus) are presented across five thematic sections. Critical discussion of methodology leads us to propose guidelines of good practices aiming for robust signal analyses and reproducibility. A continuously updated world map is proposed, including basic information from studies meeting the inclusion criteria. It provides an organized, accessible, and updatable reference database, which could serve as a catalyst for future collaborations within the community. In conclusion, fNIRS shows potential for investigating cognitive processes in music, particularly in ecological contexts and with special populations, aligning with current research priorities in music cognition.
Collapse
Affiliation(s)
- Federico Curzel
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France; LEAD CNRS UMR5022, Université de Bourgogne-Franche Comté, Dijon, Bourgogne-Franche Comté 21000, France.
| | - Laura Ferreri
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, Lombardia 27100, Italy.
| |
Collapse
|
2
|
Ding K, Li J, Li X, Li H. Understanding the Effect of Listening to Music, Playing Music, and Singing on Brain Function: A Scoping Review of fNIRS Studies. Brain Sci 2024; 14:751. [PMID: 39199446 PMCID: PMC11352997 DOI: 10.3390/brainsci14080751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Music is integrated into daily life when listening to it, playing it, and singing, uniquely modulating brain activity. Functional near-infrared spectroscopy (fNIRS), celebrated for its ecological validity, has been used to elucidate this music-brain interaction. This scoping review synthesizes 22 empirical studies using fNIRS to explore the intricate relationship between music and brain function. This synthesis of existing evidence reveals that diverse musical activities, such as listening to music, singing, and playing instruments, evoke unique brain responses influenced by individual traits and musical attributes. A further analysis identifies five key themes, including the effect of passive and active music experiences on relevant human brain areas, lateralization in music perception, individual variations in neural responses, neural synchronization in musical performance, and new insights fNIRS has revealed in these lines of research. While this review highlights the limited focus on specific brain regions and the lack of comparative analyses between musicians and non-musicians, it emphasizes the need for future research to investigate the complex interplay between music and the human brain.
Collapse
Affiliation(s)
- Keya Ding
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
- Lab for Educational Big Data and Policymaking, Ministry of Education, Shanghai 200234, China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Jingwen Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
| | - Xuemei Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
| | - Hui Li
- Faculty of Education and Human Development, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Andrushko JW, Levenstein JM, Zich C, Edmond EC, Campbell J, Clarke WT, Emir U, Farthing JP, Stagg CJ. Repeated unilateral handgrip contractions alter functional connectivity and improve contralateral limb response times. Sci Rep 2023; 13:6437. [PMID: 37081073 PMCID: PMC10119116 DOI: 10.1038/s41598-023-33106-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
In humans, motor learning is underpinned by changes in sensorimotor network functional connectivity (FC). Unilateral contractions increase FC in the ipsilateral primary motor cortex (M1) and supplementary motor area (SMA); areas involved in motor planning and execution of the contralateral hand. Therefore, unilateral contractions are a promising approach to augment motor performance in the contralateral hand. In a within-participant, randomized, cross-over design, 15 right-handed adults had two magnetic resonance imaging (MRI) sessions, where functional-MRI and MR-Spectroscopic Imaging were acquired before and after repeated right-hand contractions at either 5% or 50% maximum voluntary contraction (MVC). Before and after scanning, response times (RTs) were determined in both hands. Nine minutes of 50% MVC contractions resulted in decreased handgrip force in the contracting hand, and decreased RTs and increased handgrip force in the contralateral hand. This improved motor performance in the contralateral hand was supported by significant neural changes: increased FC between SMA-SMA and increased FC between right M1 and right Orbitofrontal Cortex. At a neurochemical level, the degree of GABA decline in left M1, left and right SMA correlated with subsequent behavioural improvements in the left-hand. These results support the use of repeated handgrip contractions as a potential modality for improving motor performance in the contralateral hand.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada.
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Jacob M Levenstein
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Section on Functional Imaging Methods, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Thompson Institute, University of the Sunshine Coast, Sippy Downs, Australia
| | - Catharina Zich
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Evan C Edmond
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jon Campbell
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - William T Clarke
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, USA
| | | | - Charlotte J Stagg
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
fNIRS & e-drum: An ecological approach to monitor hemodynamic and behavioural effects of rhythmic auditory cueing training. Brain Cogn 2021; 151:105753. [PMID: 34020165 DOI: 10.1016/j.bandc.2021.105753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/03/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Converging evidence suggests a beneficial effect of rhythmic music-therapy in easing motor dysfunctions. Nevertheless, the neural systems underpinning both the direct effect and the influence of rhythm on movement control and execution during training in ecological settings are still largely unknown. In this study, we propose an ecological approach to monitor brain activity and behavioural performance during rhythmic auditory cueing short-term training. Our approach envisages the combination of functional near-infrared spectroscopy (fNIRS), which is a non-invasive neuroimaging technique that allows unconstrained movements of participants, with electronic drum (e-drum), which is an instrument able to collect behavioural tapping data in real time. The behavioural and brain effects of this short-term training were investigated on a group of healthy participants, who well tolerated the experimental settings, since none of them withdrew from the study. The rhythmic auditory cueing short-term training improved beat regularity and decreased group variability. At the group level, the training resulted in a reduction of brain activity primarily in premotor areas. Furthermore, participants with the highest behavioural improvement during training showed the smallest reduction in brain activity. Overall, we conclude that our study could pave the way towards translating the proposed approach to clinical settings.
Collapse
|
5
|
Dans PW, Foglia SD, Nelson AJ. Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain Sci 2021; 11:606. [PMID: 34065136 PMCID: PMC8151801 DOI: 10.3390/brainsci11050606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
FNIRS pre-processing and processing methodologies are very important-how a researcher chooses to process their data can change the outcome of an experiment. The purpose of this review is to provide a guide on fNIRS pre-processing and processing techniques pertinent to the field of human motor control research. One hundred and twenty-three articles were selected from the motor control field and were examined on the basis of their fNIRS pre-processing and processing methodologies. Information was gathered about the most frequently used techniques in the field, which included frequency cutoff filters, wavelet filters, smoothing filters, and the general linear model (GLM). We discuss the methodologies of and considerations for these frequently used techniques, as well as those for some alternative techniques. Additionally, general considerations for processing are discussed.
Collapse
Affiliation(s)
- Patrick W. Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
6
|
Sagari A, Kanao H, Mutai H, Iwanami J, Sato M, Kobayashi M. Cerebral Hemodynamics During a Cognitive-Motor Task Using the Limbs. Front Hum Neurosci 2020; 14:568030. [PMID: 33240062 PMCID: PMC7683383 DOI: 10.3389/fnhum.2020.568030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Antagonistic tasks are cognitive-motor task trainings. Intervention programs involving antagonistic exercise tasks are being employed to help prevent falls and reduce the need for nursing care in older populations. Meanwhile, the effects of such tasks on blood flow in the brain remain obscure. This study aimed to clarify the effects of antagonistic tasks on prefrontal cortical cerebral hemodynamics. Materials and Methods: We assessed 13 healthy adults (two men, 11 women; mean age, 21.4 ± 1.0 years). Participants imitated each of the antagonistic tasks presented on a PC monitor placed at a 120-mm viewing distance. All participants performed six tasks, consisting of upper-limb tasks (non-antagonism, simple antagonism, and complex antagonism) and upper- and lower-limb tasks (tasks combining lower-limb opening and closing movements with each upper-limb task). We used near-infrared spectroscopy (NIRS) to measure cerebral blood flow dynamics, with oxygenated hemoglobin (Oxy-Hb) concentration changes as the main outcome. A 10-channel probe was placed on the participants’ forehead, focusing on the prefrontal cortex. We first obtained a baseline NIRS measurement for 10 s; the participants then imitated the task presented on the PC monitor for 90 s. We measured the number of errors and the subjective difficulty of each task. Results: The increase in prefrontal cortex Oxy-Hb concentration was significantly higher in the complex antagonist conditions than in the non-antagonistic and simple antagonistic conditions. There were no significant prefrontal cortex Oxy-Hb differences between the upper limb and upper- and lower-limb conditions (increasing number of motor limbs). Conclusions: The study findings support that an increase in finger-shaped complexity has a greater effect on cerebral blood flow dynamics in the prefrontal cortex than does an increase in the number of motor limbs involved in the task.
Collapse
Affiliation(s)
- Akira Sagari
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Hiroyo Kanao
- Rehabilitation Division, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Hitoshi Mutai
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Jun Iwanami
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Masaaki Sato
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Masayoshi Kobayashi
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| |
Collapse
|