1
|
Febrer-Serra M, Lassnig N, Colomar V, Picó G, Tejada S, Sureda A, Pinya S. Oxidative stress and behavioral responses of moorish geckos (Tarentola mauritanica) submitted to the presence of an introduced potential predator (Hemorrhois hippocrepis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158864. [PMID: 36169021 DOI: 10.1016/j.scitotenv.2022.158864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Stressful situations induce an increase in the production of reactive oxygen species (ROS) which can lead to molecular damage and alteration of cell function. The introduction of new potential predators induces physiological stress in native fauna. However, behavioral responses have been reported in preys, demonstrating an induction of the defenses against alien species. Behavioral and antioxidant enzyme responses in the moorish gecko, Tarentola mauritanica, against the invasive predator horseshoe whip snake (Hemorrhois hippocrepis) were assessed. Behavior was recorded and a tissue sample from the tail was collected after placing the gecko in a terrarium with previous absence or presence of the snake in 'Control' and 'H. hippocrepis' groups, respectively. Fifteen behavioral variables were examined, including tongue flick (TF) and locomotion patterns. Antioxidant enzyme activities -catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR)-, and the levels of reduced (GSH) and oxidized glutathione (GSSG), glutathione/glutathione disulfide ratio (GSH/GSSG) and malondialdehyde (MDA) concentrations were measured in the tissue sampled. Geckos exposed to the snake's odor showed a higher number of TF, longer amounts of time remaining motionless or moving in slow motion and they spent less time on the ground in comparison to the 'Control' group. The presence of the snake produced a significant increase in the activities of CAT, SOD and GR and a decrease in the GSH/GSSG ratio in T. mauritanica individuals exposed to the snake's scent. Thus, both behavioral responses and oxidative stress biomarkers clearly showed that T. mauritanica is able to recognize H. hippocrepis as a potential predator, despite being a recently introduced snake at the Balearic Islands.
Collapse
Affiliation(s)
- Maria Febrer-Serra
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain.
| | - Nil Lassnig
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain
| | - Víctor Colomar
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Spain
| | - Gabriela Picó
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Spain
| | - Silvia Tejada
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain.
| | - Antoni Sureda
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7.5, Ed. Guillem Colom, 07122 Palma, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain.
| |
Collapse
|
2
|
Piquet JC, López-Darias M. Invasive snake causes massive reduction of all endemic herpetofauna on Gran Canaria. Proc Biol Sci 2021; 288:20211939. [PMID: 34875190 PMCID: PMC8651408 DOI: 10.1098/rspb.2021.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/12/2022] Open
Abstract
Invasive snakes represent a serious threat to island biodiversity, being responsible for far-reaching impacts that are noticeably understudied, particularly regarding native reptiles. We analysed the impact of the invasive California kingsnake, Lampropeltis californiae-recently introduced in the Canary Islands-on the abundance of all endemic herpetofauna of the island of Gran Canaria. We quantified the density in invaded and uninvaded sites for the Gran Canaria giant lizard, Gallotia stehlini, the Gran Canaria skink, Chalcides sexlineatus, and Boettger's wall gecko, Tarentola boettgeri. We used spatially explicit capture-recapture and distance-sampling methods for G. stehlini and active searches under rocks for the abundance of the other two reptiles. The abundance of all species was lower in invaded sites, with a reduction in the number of individuals greater than 90% for G. stehlini, greater than 80% for C. sexlineatus and greater than 50% for T. boettgeri in invaded sites. Our results illustrate the severe impact of L. californiae on the endemic herpetofauna of Gran Canaria and highlight the need for strengthened measures to manage this invasion. We also provide further evidence of the negative consequences of invasive snakes on island reptiles and emphasize the need for further research on this matter on islands worldwide.
Collapse
Affiliation(s)
- Julien C. Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
3
|
Montes E, Kraus F, Chergui B, Pleguezuelos JM. Collapse of the endemic lizard Podarcis pityusensis on the island of Ibiza mediated by an invasive snake. Curr Zool 2021; 68:295-303. [PMID: 35592342 PMCID: PMC9113342 DOI: 10.1093/cz/zoab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/07/2021] [Indexed: 11/24/2022] Open
Abstract
The invasive snake Hemorrhois hippocrepis colonized the island of Ibiza (Balearic Islands) in 2003 as stowaways inside trunks of olive trees imported for gardening. It has quickly spread since 2010, posing a threat to the island’s only remaining endemic vertebrate, the Ibiza wall lizard Podarcis pityusensis. We map the yearly expansion rate of the snake and estimate via transect surveys how severely it affects the distribution and abundance of the endemic lizard. As well, we surveyed 9 of 30 small lizard populations on islets surrounding Ibiza that have been isolated since the Last Glacial Maximum. Snakes had invaded 49% of Ibiza’s land area by 2018, and censuses show a critical contrast in lizard abundance between areas with and without snakes; almost all censuses in areas without snakes show lizard presence whereas nearly all censuses in areas with H. hippocrepis lack lizard sightings. Moreover, at least one subspecies previously thriving on one of the offshore islets has become extinct, and there have been several snakes recorded swimming between Ibiza and the surrounding islets. Therefore, lizard populations have been dramatically reduced or have vanished within the range of the snake, and our results quantitatively support upgrading this species’ threat level for extinction. This study can inform to programs to manage invasive snake populations and to conservation actions to recover the endemic lizard.
Collapse
Affiliation(s)
- Elba Montes
- Department of Zoology, Faculty of Biological Sciences, University of Valencia, c/Dr. Moliner, 50, Burjassot, E-46100 Valencia, Spain
| | - Fred Kraus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brahim Chergui
- Laboratoire Ecologie, Systématique, Conservation de la Biodiversité, Faculté des Sciences de Tétouan, Université Abdelmalek Essaâdi, BP 2121 El M’Hannech, Tétouan, Morocco
| | - Juan M Pleguezuelos
- Department of Zoology, Faculty of Sciences, Granada University, Granada E-18071, Spain
| |
Collapse
|
4
|
Torres-Roig E, Mitchell KJ, Alcover JA, Martínez-Freiría F, Bailón S, Heiniger H, Williams M, Cooper A, Pons J, Bover P. Origin, extinction and ancient DNA of a new fossil insular viper: molecular clues of overseas immigration. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Viperinae is a subfamily of viperid snakes whose fossil record in the Mediterranean islands is, until now, restricted to 12 palaeontological deposits on seven islands. Revision of the material excavated 30 years ago from the Middle/Late Pleistocene–Holocene deposit of Es Pouàs [Eivissa (= Ibiza), Balearic Islands, western Mediterranean] revealed about 6000 bones of a small-sized viper across different stratigraphic levels. Its morphological characteristics are different enough to known species of Vipera to warrant the description of a new species, but the nearly complete mitochondrial genome obtained from this snake based on a sample dated to 16 130 ± 45 bp, suggested it belonged to a new insular population of Lataste’s viper (Vipera latastei), Vipera latastei ebusitana subsp. nov. Phylogenetic analysis indicates that the dispersal of the ancestors of V. l. ebusitana to Eivissa, most probably from a north-east Iberian population, occurred via overwater colonization < 1.5 Mya, well after the Messinian Salinity Crisis (5.97–5.32 Mya) when land bridges allowed terrestrial colonization of the Balearic Islands by mainland faunas. The morphological differences between V. l. ebusitana and the Iberian populations suggest that it is a new dwarf taxon resulting from insular evolutionary processes, becoming extinct shortly after the first human arrival to this island about 4000 years ago.
Collapse
Affiliation(s)
- Enric Torres-Roig
- Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Josep Antoni Alcover
- Departament de Biodiversitat Animal i Microbiana. Institut Mediterrani d’Estudis Avançats (UIB-CSIC), Esporles, Mallorca, Spain
| | - Fernando Martínez-Freiría
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
| | - Salvador Bailón
- Histoire Naturelle de l’Homme Préhistorique, UMR 7194, Sorbonne Universités, MNHN, CNRS, Paris, France
- Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, UMR 7209, Sorbonne Universités, MNHN, CNRS, Paris, France
| | - Holly Heiniger
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia
| | - Joan Pons
- Departament de Biodiversitat Animal i Microbiana. Institut Mediterrani d’Estudis Avançats (UIB-CSIC), Esporles, Mallorca, Spain
| | - Pere Bover
- Aragonese Foundation for Research & Development (ARAID), Zaragoza, Spain
- IUCA, Instituto Universitario de Investigación en Ciencias Ambientales-Grupo Aragosaurus. Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Montes E, Feriche M, Ruiz-Sueiro L, Alaminos E, Pleguezuelos JM. Reproduction ecology of the recently invasive snake Hemorrhois hippocrepis on the island of Ibiza. Curr Zool 2020; 66:363-371. [PMID: 32617085 PMCID: PMC7319453 DOI: 10.1093/cz/zoz059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/23/2019] [Indexed: 11/18/2022] Open
Abstract
Knowing the causes of biological invasion success can be relevant to combat future invasive processes. The recent invasion of the horseshoe whip snake Hemorrhois hippocrepis on the island of Ibiza provides the opportunity to compare natural history traits between invasive and source populations, and to unravel what makes this snake a successful invader that is threatening the only endemic vertebrate of the island, Podarcis pityusensis. This study compares the basic reproductive traits of mainland native and invasive populations of the snake. Our results revealed that invasive populations were characterized by female maturity at a smaller size, extended reproductive period, and much lower reproduction frequency compared to the native population. In contrast, some major reproductive traits-the abdominal fat body cycle, clutch size, hatchling body size, and hatchling body condition, did not differ between the two populations. Some of these results must reflect the environmental differences in the recently invaded island with respect to the source area, and overall plasticity of reproductive traits. Plasticity is evolutionarily interesting, and may aid the successful growth of this species in their invasiveness of Mediterranean islands like Ibiza. The most significant finding is that this expression of phenotypic plasticity occurred rapidly in this invasive population, within a period of 14 years maximum. Our results on the reproduction ecology of the invasive population were not conclusive regarding the factors determining the invasiveness of the snake and pointed to alternative causes.
Collapse
Affiliation(s)
- Elba Montes
- Department of Zoology, Faculty of Biological Sciences, University of Valencia, c/Dr. Moliner, 50, Burjassot, Valencia E-46100, Spain
| | - Mónica Feriche
- Department of Zoology, Faculty of Sciences, Granada University, Granada E-18071, Spain
| | - Leticia Ruiz-Sueiro
- Laboratory of Ecology and Evolution, Butantan Institute, University of São Paulo, Av. Vital Brazil, 1.500, Butantã, E-05503900, São Paulo, Brasil
| | | | - Juan M Pleguezuelos
- Department of Zoology, Faculty of Sciences, Granada University, Granada E-18071, Spain
| |
Collapse
|