1
|
Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med (Lausanne) 2022; 9:835843. [PMID: 35783647 PMCID: PMC9243558 DOI: 10.3389/fmed.2022.835843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sight is arguably the most important sense in human. Being constantly exposed to the environmental stress, irritants and pathogens, the ocular surface – a specialized functional and anatomical unit composed of tear film, conjunctival and corneal epithelium, lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as antimicrobial peptides, are evolutionarily conserved molecular components of innate immunity that are found in all classes of life. Since the first discovery of lysozyme in 1922, a wide range of HDPs have been identified at the ocular surface. In addition to their antimicrobial activity, HDPs are increasingly recognized for their wide array of biological functions, including anti-biofilm, immunomodulation, wound healing, and anti-cancer properties. In this review, we provide an updated review on: (1) spectrum and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease, keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3) HDPs that are currently in the development pipeline for treatment of ocular diseases and infections; and (4) future potential of HDP-based clinical pharmacotherapy for ocular diseases.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- *Correspondence: Darren Shu Jeng Ting
| | - Imran Mohammed
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Harminder S. Dua
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
2
|
Shoji J. Ocular allergy test and biomarkers on the ocular surface: Clinical test for evaluating the ocular surface condition in allergic conjunctival diseases. Allergol Int 2020; 69:496-504. [PMID: 32563624 DOI: 10.1016/j.alit.2020.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Allergic conjunctival diseases (ACDs) are inflammatory diseases of the conjunctiva and cornea caused predominantly by the IgE-mediated immediate hypersensitivity response. Allergic conjunctival diseases include allergic conjunctivitis, vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis (AKC), and giant papillary conjunctivitis. In clinical practice of ACDs, an ocular allergy test using biomarker measurement is a crucial examination technique for diagnosing, evaluating severity, and determining the efficacy of medical treatment. The ocular allergy test includes the tear test for evaluating the concentration of biomarkers in tears and an ocular surface test for assessing the expression levels of messenger ribonucleic acid (mRNA) biomarkers on the ocular surface. The clinical usefulness of several biomarkers has been demonstrated in patients with ACDs; specifically, eosinophil cationic protein and eotaxin-2 as eosinophilic inflammation biomarkers; interleukin-4 and thymus and activation regulated chemokine (CCL17/TARC) as Th2 inflammation biomarkers; eotaxin, tumor necrosis factor-alpha and soluble IL-6 receptor as giant papillae biomarkers; and osteopontin and periostin as allergic inflammation and remodeling biomarkers. Furthermore, the ocular allergy test, quantitative evaluation methods using biomarkers have allowed for better understanding of the immunological and pathophysiological mechanisms of ACDs. Therefore, the search for a biomarker is important to make an ocular allergy test useful. In previous ocular allergy tests, the biomarkers for allergic inflammation in patients with chronic ACDs including VKC and AKC were substantial. However, the selection of biomarkers associated with the early phase reaction of immediate hypersensitivity and innate immunity responses needs to be addressed in future investigations.
Collapse
Affiliation(s)
- Jun Shoji
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Ohyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
3
|
Kolar SS, McDermott AM. Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011; 68:2201-13. [PMID: 21584809 PMCID: PMC3637883 DOI: 10.1007/s00018-011-0713-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.
Collapse
Affiliation(s)
- Satya S. Kolar
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| | - Alison M. McDermott
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| |
Collapse
|
4
|
Host-pathogen interactions in the cornea. Jpn J Ophthalmol 2010; 54:191-3. [DOI: 10.1007/s10384-010-0802-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/15/2010] [Indexed: 11/26/2022]
|
5
|
Zhao JG, Zhou L, Jin JY, Zhao Z, Lan J, Zhang YB, Zhang QY, Gui JF. Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-kappaB and Sp1 of a medaka beta-defensin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:624-637. [PMID: 19084554 DOI: 10.1016/j.dci.2008.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 10/06/2008] [Accepted: 11/07/2008] [Indexed: 05/27/2023]
Abstract
Defensins are a group of cationic antimicrobial peptides which play an important role in the innate immune system by exerting their antimicrobial activity against pathogens. In this study, we cloned a novel beta-defensin cDNA from medaka (Oryzias latipes) by rapid amplification of cDNA ends (RACE) technique. The full-length cDNA consists of 480 bp, and the open reading frame (ORF) of 189 bp encodes a polypeptide of 63 amino acids (aa) with a predicted molecular weight of 7.44 kDa. Its genomic organization was analyzed, and Southern blot detection confirmed that only one copy of beta-defensin exists in the medaka HNI strain. RT-PCR, Western blot and immunohistochemistry detections showed that the beta-defensin transcript and protein could be detected in eyes, liver, kidney, blood, spleen and gill, and obviously prevalent expression was found in eyes. Antimicrobial activity of the medaka beta-defensin was evaluated, and the antibacterial activity-specific to Gram-negative bacteria was revealed. Furthermore, the lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, was demonstrated to be able to induce about 13-fold up-regulation of the beta-defensin within first 12h. In addition, promoter and promoter mutagenesis analysis were performed in the medaka beta-defensin. A proximal 100 base pair (bp) sequence (+26 to -73) and the next 1700 bp sequence (-73 to -1755) were demonstrated to be responsible for the basal promoter activity and for the transcription regulation. Three nuclear factor kappa B (NF-kappaB) cis-elements and a Sp1 cis-element were revealed by mutagenesis analysis to exist in the 5' flanking sequence, and they were confirmed to be responsible for the up-regulation of medaka beta-defensin stimulated by LPS. And, the Sp1 cis-element was further revealed to be related to the basal promoter activity, and transcriptional factor II D (TFIID) was found to be in charge of the gene transcription initiation. All the obtained data suggested that the novel medaka beta-defensin should have antimicrobial activity-specific to Gram-negative bacteria, and the antibacterial immune function should be modulated by NF-kappaB and Sp1.
Collapse
Affiliation(s)
- Jiu-Gang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, 7# Donghu South Road, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gariboldi S, Palazzo M, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, Cavicchini S, Balsari A, Rumio C. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. THE JOURNAL OF IMMUNOLOGY 2008; 181:2103-10. [PMID: 18641349 DOI: 10.4049/jimmunol.181.3.2103] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In sites of inflammation or tissue injury, hyaluronic acid (HA), ubiquitous in the extracellular matrix, is broken down into low m.w. HA (LMW-HA) fragments that have been reported to activate immunocompetent cells. We found that LMW-HA induces activation of keratinocytes, which respond by producing beta-defensin 2. This production is mediated by TLR2 and TLR4 activation and involves a c-Fos-mediated, protein kinase C-dependent signaling pathway. LMW-HA-induced activation of keratinocytes seems not to be accompanied by an inflammatory response, because no production of IL-8, TNF-alpha, IL-1beta, or IL-6 was observed. Ex vivo and in vivo treatments of murine skin with LMW-HA showed a release of mouse beta-defensin 2 in all layers of the epidermal compartment. Therefore, the breakdown of extracellular matrix components, for example after injury, stimulates keratinocytes to release beta-defensin 2, which protects cutaneous tissue at a time when it is particularly vulnerable to infection. In addition, our observation might be important to open new perspectives in the development of possible topical products containing LMW-HA to improve the release of beta-defensins by keratinocytes, thus ameliorating the self-defense of the skin for the protection of cutaneous tissue from infection by microorganisms.
Collapse
Affiliation(s)
- Silvia Gariboldi
- Mucosal Immunity Laboratory, Department of Human Morphology, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hussain T, Nasreen N, Lai Y, Bellew BF, Antony VB, Mohammed KA. Innate immune responses in murine pleural mesothelial cells: Toll-like receptor-2 dependent induction of beta-defensin-2 by staphylococcal peptidoglycan. Am J Physiol Lung Cell Mol Physiol 2008; 295:L461-70. [PMID: 18621910 DOI: 10.1152/ajplung.00276.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The innate immune response is mediated in part by pattern recognition receptors including Toll-like receptors (TLRs). The pleural mesothelial cells (PMCs) that line the pleural surface are in direct contact with pleural fluid and accordingly carry the risk of exposure to infiltrating microorganisms or their components in an event of a complicated parapneumonic effusion. Here we show that murine primary PMCs constitutively express TLR-1 through TLR-9 and, upon activation with peptidoglycan (PGN), mouse PMC produce antimicrobial peptide beta-defensin-2 (mBD-2). Treatment of PMCs with staphylococcal PGN, a gram-positive bacterial cell wall component and a TLR-2 agonist, resulted in a significant increase in TLR-2 and mBD-2 expression. Silencing of TLR-2 expression by small interfering RNA led to the downregulation of PGN-induced mBD-2 expression, thereby establishing causal relationship between the activation of TLR-2 receptor and mBD-2 production. PMCs exposed to PGN showed increased p38 MAPK activity. In addition, PGN-induced mBD-2 expression was attenuated by SB203580, a p38 MAPK inhibitor, underlining the importance of p38 MAPK in mBD-2 induction. Inhibition of erk1/erk2 or phosphatidylinositol 3-kinase did not block PGN-induced mBD-2 expression in PMC. PGN-activated PMC-derived mBD-2 significantly killed Staphylococcus aureus, and mBD-2-neutralizing antibodies blunted this antimicrobial activity. Taken together, these data indicate that PMCs may contribute to host innate immune defense upon exposure to gram-positive bacteria or their products within the pleural space by upregulating TLR-2 and mBD-2 expression.
Collapse
Affiliation(s)
- Tajamul Hussain
- Division of Pulmonary Critical Care & Sleep Medicine, HSC Room: M452, College of Medicine, Univ. of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|