1
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW. Targeting Rac1 for the prevention of atherosclerosis among U.S. Veterans with inflammatory bowel disease. Small GTPases 2022; 13:205-210. [PMID: 34320903 PMCID: PMC9707539 DOI: 10.1080/21541248.2021.1954863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Evidence suggests that Ras-related C3 botulinum toxin substrate 1 (Rac1) might be a target in atherosclerotic disease (AD). We hypothesize that due to their ability to inhibit Rac1, thiopurines are associated with a lower risk of AD. We fit a time-dependent cox proportional hazards model estimating the hazard of AD among a national cohort of US veterans with inflammatory bowel disease. Patients exposed to thiopurines had a 7.5% lower risk of AD (HR = 0.925; 95% CI = (0.87-0.984)) compared to controls. The propensity score weighted analysis reveals thiopurine exposure reduces the risk of AD by 6.6% (HR = 0.934; 95% CI = (0.896-0.975)), compared to controls. Further exploration and evaluation of Rac1 inhibition as a target for AD is warranted.
Collapse
Affiliation(s)
- S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA,Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA,Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA,CONTACT Joseph Magagnoli Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
| | - Tammy H. Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA,Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA,Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
2
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Yang YC, Wang XD, Huang K, Wang L, Jiang ZL, Qi YX. Temporal phosphoproteomics to investigate the mechanotransduction of vascular smooth muscle cells in response to cyclic stretch. J Biomech 2014; 47:3622-9. [DOI: 10.1016/j.jbiomech.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/27/2014] [Accepted: 10/05/2014] [Indexed: 12/28/2022]
|
4
|
Role of small GTPase protein Rac1 in cardiovascular diseases: development of new selective pharmacological inhibitors. J Cardiovasc Pharmacol 2014; 62:425-35. [PMID: 23921306 DOI: 10.1097/fjc.0b013e3182a18bcc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A pathway-based genome-wide association analysis has recently identified Rac1 as one of the biologically important gene in coronary heart diseases. The role of the small GTPase Rac1 in cardiac hypertrophy and atherosclerosis has also been documented in clinical studies with the HMG-CoA reductase inhibitors and in in vitro and in vivo settings using transgenic and knockout mice. Thus, Rac1 has emerged as a new pharmacological target for the treatment of cardiovascular diseases. The activation state of Rac1 depends on the release of guanosine diphosphate and the binding of guanosine triphosphate. This cycling is regulated by the guanine nucleotide exchange factors, as activators, and by the GTPase-activating proteins. Three categories of selective Rac1 inhibitors have been developed affecting different steps of this pathway: antagonists of Rac1-guanine nucleotide exchange factor interaction, allosteric inhibitors of nucleotide binding to Rac1, and antagonists of Rac1-mediated NADPH oxidase activity. These chemical compounds have shown to selectively inhibit Rac1 activation in cultured cell lines without affecting the homologous proteins RhoA and Cdc42. Moreover, pioneer studies have been conducted with Rac1 inhibitors in in vivo experimental models of cardiovascular diseases with encouraging results. The present review summarizes the current knowledge of the role of Rac1 in cardiovascular diseases and the pharmacological approaches that have been developed to selectively inhibit its function.
Collapse
|
5
|
Hu CP, Wu XR, Li QG, Sun ZW, Wang AP, Feng JT, Wang J. Proteomic analysis of NGF-induced transdifferentiation of adrenal medullary cells. Int J Mol Med 2013; 32:347-54. [PMID: 23695304 DOI: 10.3892/ijmm.2013.1387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/25/2013] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) is a polypeptide growth factor with specific trophic function in nerve cells and was initially investigated for its role as a key player in the regulation of peripheral innervations. The aim of this study was to examine the NGF-induced transdifferentiation of adrenal medullary cells, and to screen the major candidate differentially expressed proteins involved in the transdifferentiation. NGF was used to treat primary cultures of neonatal calf adrenal medullary cells and the effects of transdifferentiation were determined in association with cellular morphology, ultrastructure and changes in endocrine function. Differentially expressed proteins were screened and identified through two-dimensional gel electrophoresis and mass spectrometry. The protein spots showing differential expression were verified by western blot analysis. We observed neurite outgrowth in the adrenal medullary cells treated with NGF under a phase contrast microscope. Ultrastructure analysis revealed that there were rich drumstick-like and villiform processes on the cell membranes and vesicles were formed near the cell membranes. The cytoplasm was rich in mitochondria and the secretion of epinephrine was decreased. Two-dimensional gel electrophoresis revealed that among the differentially expressed proteins, 48 protein spots showed an upregulated expression and 37 protein spots showed a downregulated expression, and no 'all-or-none' spots with significant differences in expression were found. Fourteen protein spots with an upregulated expression and 6 with a downregulated expression were randomly selected for identification by mass spectrometry. Western blot analysis revealed that ras homologus oncogene (Rho) GDP dissociation inhibitor α (RhoGDIα) protein expression was significantly downregulated and peripherin protein expression was significantly upregulated. In brief, our data demonstrate that NGF can induce the differentiation of adrenal medullary cells into neurons, and that RhoGDIα and peripherin may play important roles in this process.
Collapse
Affiliation(s)
- Cheng-Ping Hu
- Department of Respiratory Medicine, Central South University, Xiangya Hospital, Changsha, Hunan, P.R. China
| | | | | | | | | | | | | |
Collapse
|
6
|
DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach. Cell Death Dis 2012; 3:e402. [PMID: 23059821 PMCID: PMC3481129 DOI: 10.1038/cddis.2012.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DAMTC (7,8-diacetoxy-4-methylcoumarin) is a thioderivative of 4-methyl coumarin, and previously we have shown that DAMTC is a potent inhibitor of cell growth and an inducer of apoptosis in non-small cell lung cancer (A549) cells. It induces apoptosis through mitochondrial pathway by modulating NF-κB, mitogen-activated protein kinase (MAPK) and p53 pathways. Herein, we explored the genome-wide effects of DAMTC in A549 cells using the concerted approach of transcriptomics and proteomics. In addition to apoptotic pathways, which have been validated earlier, the bioinformatic analysis of microarray data identified small GTPase-mediated signal transduction among the significantly altered biological processes. Interestingly, we observed significant downregulation of some members of the Rho family GTPases in the proteomics data too. Downregulation of Rho GTPases (RhoGDIα (Rho GDP dissociation inhibitor-α, also known as ARHGDIA), Ras homolog family member A, Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42) was validated by western blotting. The Rho protein family is implicated in maintaining the actin filament assembly and cell motility, and we also observed that DAMTC treatment causes actin cytoskeletal reorganization, promotes filopodia formation and inhibits cell motility in A549 cells. The effect of DAMTC treatment on cytoskeleton was reversed after the overexpression of RhoGDIα. In addition, DAMTC augmented the apoptotic effect of etoposide, a proapoptotic chemotherapeutic drug. This elucidation of the mechanism behind DAMTC-induced apoptosis and inhibition of cell motility in A549 cells may make it a potential therapeutic for lung cancer.
Collapse
|
7
|
Park YJ, Ahn HJ, Kim YS, Cho Y, Joo DJ, Ju MK. Illumina-microarray analysis of mycophenolic acid-induced cell death in an insulin-producing cell line and primary rat islet cells: New insights into apoptotic pathways involved. Cell Signal 2010; 22:1773-82. [DOI: 10.1016/j.cellsig.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
|
8
|
Yotsumoto N, Takeoka M, Yokoyama M. Tail-suspended mice lacking calponin H1 experience decreased bone loss. TOHOKU J EXP MED 2010; 221:221-7. [PMID: 20551601 DOI: 10.1620/tjem.221.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calponin h1 (CNh1) is an actin-binding protein originally isolated from vascular smooth muscle and has been reported to suppress bone formation. We are therefore curious how CNh1 is involved in bone loss that is caused by space flight in microgravity. We assessed the effects of tail suspension (TS) in C57BL/6J wild (CN+/+) and CNh1-deleted (CN-/-) mice to elucidate the role of CNh1 in bone loss under weightless conditions. Bone mineral density (BMD) of tibiae was measured by single energy X-ray absorptiometry, and bone volume fraction (BV/TV), mineral apposition rate (MAR), and bone formation rate (BFR/BS) were measured by bone histomorphometry. BMD, BV/TV, MAR, and BFR/BS were lower in CN+/+ mice with TS than in those without. In the CN-/- group, however, the decrease in each of these parameters by TS was ameliorated. Decreases in serum osteocalcin levels by TS in CN+/+ mice were attenuated in CN-/- mice. Furthermore, urinary deoxypyridinolin (DPD), an indicator of bone resorption, was increased in CN+/+ mice following TS, but not in CN-/- mice. In transfection experiments, the degree of induction of bone formation markers, alkaline phosphatase (ALP) activity and bone morphogenetic protein (BMP)-4 mRNA expression, under stimulation with BMP-2, was lower in MC3T3-E1 mouse osteoblast-like cells expressing CNh1 than that in mock transfected cells. Notably, the BMP-2-induced ALP activity was decreased by CNh1 expression, which was partially rescued by treatment with the Rho kinase inhibitor Y27632. Taken together, these results indicate that CNh1 is responsible for weightlessness-induced bone loss in part through Rho signaling pathway.
Collapse
|
9
|
Qi YX, Qu MJ, Yan ZQ, Zhao D, Jiang XH, Shen BR, Jiang ZL. Cyclic strain modulates migration and proliferation of vascular smooth muscle cells via Rho-GDIalpha, Rac1, and p38 pathway. J Cell Biochem 2010; 109:906-14. [PMID: 20069557 DOI: 10.1002/jcb.22465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cyclic strain is an important inducer of proliferation and migration of vascular smooth muscle cells (VSMCs) which are involved in vascular remodeling during hypertension. However, its mechanism remains to be elucidated. VSMCs of rat aorta were exposed to cyclic strains in vitro with defined parameters, the static, 5%-strain (physiological) and 15%-strain (pathological), at 1.25 Hz for 24 h respectively. Then the possible signaling molecules participated in strain-induced VSMC migration and proliferation were investigated. The results showed that 15%-strain significantly increased VSMC migration and proliferation in comparison with 5%-strain. Expression of Rho GDP dissociation inhibitor alpha (Rho-GDIalpha) was repressed by 15%-strain, but expressions of phospho-Rac1 and phospho-p38 were increased. Expressions of phospho-Akt and phospho-ERK1/2 were similar between the static, 5%-strain and 15%-strain groups. Rho-GDIalpha "knock-down" by target siRNA transfection increased migration and proliferation of VSMCs, and up-regulated phosphorylation of Rac1 and p38 in all groups. Rac1 "knock-down" repressed migration and proliferation of VSMCs, down-regulated phosphorylation of p38, but had no effect on Rho-GDIalpha expression. When siRNAs of Rho-GDIalpha and Rac1 were co-transfected to VSMCs, the expressions of Rho-GDIalpha and phospho-Rac1 were both decreased, and the effects of Rho-GDIalpha "knock-down" were blocked. Rho-GDIalpha "knock-down" promoted while Rac1 "knock-down" postponed the assembly of stress fibers and focal adhesions in static. The results demonstrate that the pathological cyclic strain might induce migration and proliferation of VSMCs via repressing expression of Rho-GDIalpha, which subsequently verified phosphorylations of Rac1 and p38.
Collapse
Affiliation(s)
- Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|