1
|
Yasodharababu M, Nair AK. Predicting neurite extension for varying extracellular matrix stiffness and topography. J Biomech 2021; 131:110897. [PMID: 34954524 DOI: 10.1016/j.jbiomech.2021.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Neurite extension is a dynamic process and is dependent on the microenvironment. The mechanical properties of the extracellular matrix (ECM), such as stiffness and topography influence the microenvironment and affects neurite extension; however, the mechanistic basis for this dynamic response of neurite extension remains elusive. In this study, we develop a computational model that predicts neurite extension dynamics process as the stiffness and patterned topography of ECM changes. The model includes the contribution of receptors integrin and neural cellular adhesion molecule toward the growth of neurite tip. We use non-linear finite element analysis (FEA) to model the neuronal cell, neurite, and the ECM, which is then coupled to the force-deformation receptor properties obtained from molecular dynamics simulations. Using an empirical relation, we develop a neurite extension algorithm that simulates the dynamic process of growth cone induced by growth cone extension, receptor density, and rupture. We investigate the dependence of neurite extension on ECM stiffness using three distinct materials, the effect of width and spacing of continuous (cylindrical) and discontinuous (pillar) patterned topography, as well as the topography steepness and stiffness gradient. We find that an increasing stiffness and width of patterned topography results in increased neurite extension, but the magnitude of the increase differs depending on the growth cone extension and receptor density between them. These findings will aid in vitro studies in determining an ECM with appropriate mechanical properties, such as stiffness and topography that will improve neurite extension, thus resulting in the formation of functional neurons.
Collapse
Affiliation(s)
- Mohan Yasodharababu
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA; Institute for Nanoscience and Engineering, 731 W. Dickson Street, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
2
|
Guo Y, Gu J, Jiang Y, Zhou Y, Zhu Z, Ma T, Cheng Y, Ji Z, Jiao Y, Xue B, Cao Y. Regulating the Homogeneity of Thiol-Maleimide Michael-Type Addition-Based Hydrogels Using Amino Biomolecules. Gels 2021; 7:gels7040206. [PMID: 34842701 PMCID: PMC8628763 DOI: 10.3390/gels7040206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/24/2023] Open
Abstract
Poly(ethylene glycol) (PEG)-based synthetic hydrogels based on Michael-type addition reaction have been widely used for cell culture and tissue engineering. However, recent studies showed that these types of hydrogels were not homogenous as expected since micro domains generated due to the fast reaction kinetics. Here, we demonstrated a new kind of method to prepare homogenous poly(ethylene glycol) hydrogels based on Michael-type addition using the side chain amine-contained short peptides. By introducing such a kind of short peptides, the homogeneity of crosslinking and mechanical property of the hydrogels has been also significantly enhanced. The compressive mechanical and recovery properties of the homogeneous hydrogels prepared in the presence of side chain amine-contained short peptides were more reliable than those of inhomogeneous hydrogels while the excellent biocompatibility remained unchanged. Furthermore, the reaction rate and gelation kinetics of maleimide- and thiol-terminated PEG were proved to be significantly slowed down in the presence of the side chain amine-contained short peptides, thus leading to the improved homogeneity of the hydrogels. We anticipate that this new method can be widely applied to hydrogel preparation and modification based on Michael-type addition gelation.
Collapse
Affiliation(s)
- Yu Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Y.G.); (Z.J.)
| | - Jie Gu
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
| | - Yuxin Jiang
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
| | - Yanyan Zhou
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
| | - Zhenshu Zhu
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
| | - Tingting Ma
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
| | - Yuanqi Cheng
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
| | - Zongzhou Ji
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Y.G.); (Z.J.)
| | - Yonghua Jiao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Y.G.); (Z.J.)
- Correspondence: (Y.J.); (B.X.); (Y.C.)
| | - Bin Xue
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
- Correspondence: (Y.J.); (B.X.); (Y.C.)
| | - Yi Cao
- Department of Physics, Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Ministry of Education, Nanjing University, Nanjing 210093, China; (J.G.); (Y.J.); (Y.Z.); (Z.Z.); (T.M.); (Y.C.)
- Correspondence: (Y.J.); (B.X.); (Y.C.)
| |
Collapse
|
8
|
Abstract
Nerve conduits with grooved inner texture, working as a topographical guidance cue, have been experimentally proved to play a significant role in axonal alignment. How grooved conduits guide axonal outgrowth is of particular interest for studying nerve regeneration. A viscoelastic model of axonal outgrowth in a conduit with a defined grooved geometry characterized by its width in the circumferential direction and its height in the radial direction is developed in this work. In this model, the axon is considered as an elastic beam and the axonal deformation and motion, including stretching, bending and torsion, are described using a Cosserat rod theory. The friction between axon and substrate is also considered in this model as well as the tip outgrowth. It is found that the directional outgrowth of the axon can be significantly improved by the grooved texture: when the groove width decreases or the groove height increases, the axonal elongation in the longitudinal direction of the conduit can be increased, which is in good agreement with experimental observations. This work is the first numerical model to study the effect of the substrate geometry on axonal outgrowth.
Collapse
Affiliation(s)
- Jun Yin
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
9
|
Voyiadjis AG, Buettner HM, Shreiber D, Shinbrot T. Engineered in vitro/in silico models to examine neurite target preference. J Neurotrauma 2011; 28:2363-75. [PMID: 21391808 DOI: 10.1089/neu.2010.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research on spinal cord injury (SCI) repair focuses on developing mechanisms to allow neurites to grow past an injury site. In this article, we observe that numerous divergent paths (i.e., spinal roots) are present along the spinal column, and hence guidance strategies must be devised to ensure that regrowing neurites reach viable targets. Therefore, we have engineered an in vitro micropatterned model in which cultured E7 dorsal root ganglia (DRG) explants may enter alternate pathways (?roots?) along a branching micropattern. Alongside this in vitro model, we have developed an in silico simulation that we validate by comparison with independent experiments. We find in both in silico and in vitro models that the probability of a neurite entering a given root decreases exponentially with respect to the number of roots away from the DRG; consequently, the likelihood of neurites reaching a distant root can be vanishingly small. This result represents a starting point for future strategies to optimize the likelihood that neurites will reach appropriate targets in the regenerating nervous system, and provides a new computational tool to evaluate the feasibility and expected success of neurite guidance in complex geometries.
Collapse
Affiliation(s)
- Andrew G Voyiadjis
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
10
|
Forciniti L, Wang G, Zaman MH. Actin–Fascin Bundle Formation Under Pressure. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|