1
|
Pollalis D, Calle AG, Martinez-Camarillo JC, Ahluwalia K, Hinman C, Mitra D, Lebkowski J, Lee SY, Thomas BB, Ahmed F, Chan V, Junge JA, Fraser S, Louie S, Humayun M. Scaling up polarized RPE cell supernatant production on parylene membrane. Exp Eye Res 2024; 240:109789. [PMID: 38242423 DOI: 10.1016/j.exer.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer. In this study, we cultivated human embryonic stem cell-derived polarized RPE (hESC-PRPE) cells on parylene membranes at both small- and large-scale settings, collecting conditioned supernatant, denoted as PRPE-SF. We conducted a comprehensive analysis of the morphology of the cultured hESC-RPE cells and the secreted growth factors in PRPE-SF. To evaluate the in vivo efficacy of these products, the product was administered via intravitreal injections of PRPE-SF in immunodeficient Royal College of Surgeons (iRCS) rats, a model for retinal degeneration. Our study not only demonstrated the scalability of PRPE-SF production while maintaining RPE cell phenotype but also showed consistent protein concentrations between small- and large-scale batches. We consistently identified 10 key factors in PRPE-SF, including BMP-7, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, MANF, PEDF, PDGF-AA, TGFβ1, and VEGF. Following intravitreal administration of PRPE-SF, we observed a significant increase in the thickness of the outer nuclear layer (ONL) and photoreceptor preservation in iRCS rats. Furthermore, correlation analysis revealed that IGFBP-3, IGFBP-4, MANF, PEDF, and TGFβ1 displayed positive associations with in vivo bioactivity, while GDF-15 exhibited a negative correlation. Overall, this study highlights the feasibility of scaling up PRPE-SF production on parylene membranes without compromising its essential constituents. The outcomes of PRPE-SF administration in an animal model of retinal degeneration present substantial potential for photoreceptor preservation. Moreover, the identification of candidate surrogate potency markers, showing strong positive associations with in vivo bioactivity, lays a solid foundation for the development of a promising therapeutic intervention for retinal degenerative diseases.
Collapse
Affiliation(s)
- Dimitrios Pollalis
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Alejandra Gonzalez Calle
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Martinez-Camarillo
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Kabir Ahluwalia
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cassidy Hinman
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Debbie Mitra
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA
| | - Sun Young Lee
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B Thomas
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Faizah Ahmed
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Victoria Chan
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Jason A Junge
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan Louie
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark Humayun
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Parker AJ, Barnard AS. Machine learning reveals multiple classes of diamond nanoparticles. NANOSCALE HORIZONS 2020; 5:1394-1399. [PMID: 32840548 DOI: 10.1039/d0nh00382d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Generating samples of nanoparticles with specific properties that allow for structural diversity, rather than requiring structural precision, is a more sustainable prospect for industry, where samples need to be both targeted to specific applications and cost effective. This can be better enabled by defining classes of nanoparticles and characterising the properties of the class as a whole. In this study, we use machine learning to predict the different classes of diamond nanoparticles based entirely on the structural features and explore the populations of these classes in terms of the size, shape, speciation and charge transfer properties. We identify 9 different types of diamond nanoparticles based on their similarity in 17 dimensions and, contrary to conventional wisdom, find that the fraction of sp2 or sp3 hybridized atoms are not strong determinants, and that the classes are only weakly related to size. Each class has been describe in such way as to enable rapid assignment using microanalysis techniques.
Collapse
Affiliation(s)
- Amanda J Parker
- Data61 CSIRO, Door 34 Goods Shed Village St, Docklands, Victoria, Australia.
| | | |
Collapse
|
3
|
Barnard AS. Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. NANOSCALE 2018; 10:8893-8910. [PMID: 29737997 DOI: 10.1039/c8nr01688g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diamond nanoparticles (nanodiamonds) are unique among carbon nanomaterials, and are quickly establishing a niché in the biomedical application domain. Nanodiamonds are non-toxic, amenable to economically viable mass production, and can be interfaced with a variety of functional moieties. However, developmental challenges arise due to the chemical complexity and structural diversity inherent in nanodiamond samples. Nanodiamonds present a narrow, but significant, distribution of sizes, a dizzying array of possible shapes, and a complicated surface containing aliphatic and aromatic carbon. In the past these facts have been cast as hindrances, stalling development until perfectly monodispersed samples could be achieved. Current research has moved in a different direction, exploring ways that the polydispersivity of nanodiamond samples can be used as a new degree of engineering freedom, and understanding the impact our limited synthetic control really has upon structure/property relationships. In this review a series of computational and statistical studies will be summarised and reviewed, to characterise the relationship between chemical complexity, structural diversity and the reactive performance of nanodiamond drug carriers.
Collapse
Affiliation(s)
- A S Barnard
- Data61 CSIRO, Door 34 Goods Shed Village St, Docklands, Victoria, Australia.
| |
Collapse
|
4
|
Barnard AS. Heterogeneous PEGylation of diamond nanoparticles. NANOSCALE 2017; 9:70-74. [PMID: 27910975 DOI: 10.1039/c6nr08315c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coating the surfaces of inorganic nanoparticles with polyethylene glycol (PEG) is an important step in the development of many nanoparticle-based drug delivery systems. The efficiency with which drug molecules can be loaded on to nanoparticle surfaces is contingent on the concentration, distribution and stability of the PEG coating. In this study the distribution and relative stability of PEG on diamond nanoparticles is predicted, for clean and passivated surface structures, in 3D. This is an ideal exemplar, since PEGylated diamond nanoparticles are already being trialed as carriers for doxorubicin (DOX). The results show that PEGylation is favorable near the {100} facets regardless of surface reconstructions or pre-treatment, but pre-treatment is required to increase the probability of stable and homogeneous PEGylation on other facets.
Collapse
|
5
|
Sun B, Barnard AS. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. NANOSCALE 2016; 8:14264-14270. [PMID: 27404991 DOI: 10.1039/c6nr03068h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.
Collapse
Affiliation(s)
- Baichuan Sun
- CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052, Australia.
| | | |
Collapse
|
6
|
Lai L, Barnard AS. Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles. NANOSCALE 2016; 8:7899-7905. [PMID: 26659270 DOI: 10.1039/c5nr06759f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Like many of the useful nanomaterials being produced on the industrial scale, the surface of diamond nanoparticles includes a complicated mixture of various atomic and molecular adsorbates, attaching to the facets following synthesis. Some of these adsorbates may be functional, and adsorption is encouraged to promote applications in biotechnology and nanomedicine, but others are purely adventurous and must be removed prior to use. In order to devise more effective treatments it is advantageous to know the relative strength of the interactions of the adsorbates with the surface, and ideally how abundant they are likely to be under different conditions. In this paper we use a series of explicit electronic structure simulations to map the distribution of small hydrocarbons, amines and thiols on a 2.9 nm diamond nanoparticle, with atomic level resolution, in 3-D. We find a clear relationship between surface reconstructions, facet orientation, and the distribution of the different adsorbates; with a greater concentration expected on the (100) and (110) facets, particularly when the supersaturation in the reservoir is high. Adsorption on the (111) facets is highly unlikely, suggesting that controlled graphitization may be a useful stage in the cleaning and treatment of nanodiamonds, prior to the deliberate coating with functional adsorbates needed for drug delivery applications.
Collapse
Affiliation(s)
- Lin Lai
- School of Physical Science and Technology, Southwest University, BeiBei District, Chongqing, 400715, P.R. China
| | - Amanda S Barnard
- CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
Robinson E, Kaushal S, Alaboson J, Sharma S, Belagodu A, Watkins C, Walker B, Webster G, McCarthy P, Ho D. Combinatorial release of dexamethasone and amiodarone from a nano-structured parylene-C film to reduce perioperative inflammation and atrial fibrillation. NANOSCALE 2016; 8:4267-4275. [PMID: 26838117 DOI: 10.1039/c5nr07456h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Suppressing perioperative inflammation and post-operative atrial fibrillation requires effective drug delivery platforms (DDP). Localized anti-inflammatory and anti-arrhythmic agent release may be more effective than intravenous treatment to improve patient outcomes. This study utilized a dexamethasone (DEX) and amiodarone (AMIO)-loaded Parylene-C (PPX) nano-structured film to inhibit inflammation and atrial fibrillation. The PPX film was tested in an established pericardial adhesion rabbit model. Following sternotomy, the anterior pericardium was resected and the epicardium was abraded. Rabbits were randomly assigned to five treatment groups: control, oxidized PPX (PPX-Oxd), PPX-Oxd infused with DEX (PPX-Oxd[DEX]), native PPX (PPX), and PPX infused with DEX and AMIO (PPX[AMIO, DEX]). 4 weeks post-sternotomy, pericardial adhesions were evaluated for gross adhesions using a 4-point grading system and histological evaluation for epicardial neotissue fibrosis (NTF). Atrial fibrillation duration and time per induction were measured. The PPX[AMIO, DEX] group had a significant reduction in mean adhesion score compared with the control group (control 2.75 ± 0.42 vs. PPX[AMIO, DEX] 0.25 ± 0.42, P < 0.001). The PPX[AMIO, DEX] group was similar to native PPX (PPX 0.38 ± 0.48 vs. PPX[AMIO, DEX] 0.25 ± 0.42, P=NS). PPX-Oxd group adhesions were indistinguishable from controls (PPX-Oxd 2.83 ± 0.41 vs. control 2.75 ± 0.42, P=NS). NTF was reduced in the PPX[AMIO, DEX] group (0.80 ± 0.10 mm) compared to control (1.78 ± 0.13 mm, P < 0.001). Total duration of atrial fibrillation was decreased in rabbits with PPX[AMIO, DEX] films compared to control (9.5 ± 6.8 s vs. 187.6 ± 174.7 s, p = 0.003). Time of atrial fibrillation per successful induction decreased among PPX[AMIO, DEX] films compared to control (2.8 ± 1.2 s vs. 103.2 ± 178 s, p = 0.004). DEX/AMIO-loaded PPX films are associated with reduced perioperative inflammation and a diminished atrial fibrillation duration. Epicardial application of AMIO, DEX films is a promising strategy to prevent post-operative cardiac complications.
Collapse
Affiliation(s)
- Erik Robinson
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Sunjay Kaushal
- Division of Pediatric Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Justice Alaboson
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Sudhish Sharma
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Amogh Belagodu
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Claire Watkins
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Brandon Walker
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, the Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Dean Ho
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA. and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA and Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
8
|
Barnard AS. Challenges in modelling nanoparticles for drug delivery. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:023002. [PMID: 26682622 DOI: 10.1088/0953-8984/28/2/023002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar.
Collapse
Affiliation(s)
- Amanda S Barnard
- CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Vannozzi L, Ricotti L, Filippeschi C, Sartini S, Coviello V, Piazza V, Pingue P, La Motta C, Dario P, Menciassi A. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. Int J Nanomedicine 2015; 11:69-91. [PMID: 26730191 PMCID: PMC4694686 DOI: 10.2147/ijn.s92031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This work aims to demonstrate the possibility to fabricate ultra-thin polymeric films loaded with an anti-restenotic drug and capable of tunable drug release kinetics for the local treatment of restenosis. Vascular nanopatches are composed of a poly(lactic acid) supporting membrane (thickness: ~250 nm) on which 20 polyelectrolyte bilayers (overall thickness: ~70 nm) are alternatively deposited. The anti-restenotic drug is embedded in the middle of the polyelectrolyte structure, and released by diffusion mechanisms. Nanofilm fabrication procedure and detailed morphological characterization are reported here. Barium titanate nanoparticles (showing piezoelectric properties) are included in the polymeric support and their role is investigated in terms of influence on nanofilm morphology, drug release kinetics, and cell response. Results show an efficient drug release from the polyelectrolyte structure in phosphate-buffered saline, and a clear antiproliferative effect on human smooth muscle cells, which are responsible for restenosis. In addition, preliminary evidences of ultrasound-mediated modulation of drug release kinetics are reported, thus evaluating the influence of barium titanate nanoparticles on the release mechanism. Such data were integrated with quantitative piezoelectric and thermal measurements. These results open new avenues for a fine control of local therapies based on smart responsive materials.
Collapse
Affiliation(s)
- Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Carlo Filippeschi
- Center for MicroBioRobotics at SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy
| | | | - Vito Coviello
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Piazza
- Center for Nanotechnology Innovation at NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
10
|
Barnard AS, Per MC. Size and shape dependent deprotonation potential and proton affinity of nanodiamond. NANOTECHNOLOGY 2014; 25:445702. [PMID: 25302774 DOI: 10.1088/0957-4484/25/44/445702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present > 10(4) simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.
Collapse
Affiliation(s)
- Amanda S Barnard
- CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | |
Collapse
|
11
|
Lai L, Barnard AS. Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. NANOSCALE 2014; 6:14185-14189. [PMID: 25340582 DOI: 10.1039/c4nr05363j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stable and predictable functionalization of nanodiamond with carboxyl is an important first step in loading these materials with therapeutic agents, and the conjugation with proteins, cytochrome, antigen, and DNA. By creating a map of the adsorption strength of COOH, OH, O and H with atomic level resolution across the entire surface of an experimentally realistic nanodiamond, we have shown how the distribution is highly anisotropic, and depends on surface reconstructions, facet orientation, and ultimately the shape. This provides useful insights into how the structure of nanodiamond impacts the formation of COOH surface monolayers, and suggests that efforts to separate nanodiamonds by shape would be highly beneficial in the development of drug delivery vehicles targeted to specific treatment regimes.
Collapse
Affiliation(s)
- Lin Lai
- CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
12
|
|
13
|
Zha RH, Sur S, Stupp SI. Self-assembly of cytotoxic peptide amphiphiles into supramolecular membranes for cancer therapy. Adv Healthc Mater 2013; 2:126-33. [PMID: 23184589 PMCID: PMC3680364 DOI: 10.1002/adhm.201200118] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Indexed: 11/09/2022]
Abstract
Peptide amphiphiles (PAs) provide a versatile platform for the design of complex and functional material constructs for biomedical applications. The hierarchical self-assembly of PAs with biopolymers is used to create robust hybrid membranes with molecular order on the micron scale. Fabrication of membranes by assembling hyaluronic acid with positively charged PA nanostructures containing anti-cancer PAs bearing a (KLAKLAK)(2) peptide sequence is reported here. Changes in membrane microstructure as the positively charged PA nanostructures vary from cylindrical nanofibers to spherical aggregates are characterized. Results indicate that formation of highly aligned fibrous membranes requires a threshold concentration of nanofibers in solution. Additionally, variation of PA nanostructure morphology from spherical aggregates to cylindrical nanofibers allows membranes to act either as reservoirs for sustained release of cytotoxicity upon enzymatic degradation or as membranes with surface-bound cytotoxicity, respectively. Thus, the self-assembly processes of these PA-biopolymer membranes can be potentially used to design delivery platforms for anti-cancer therapeutics.
Collapse
Affiliation(s)
- R. Helen Zha
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611,
| | - Shantanu Sur
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611,
| | - Samuel I. Stupp
- Department of Materials Science and Engineering, Department of Chemistry, Northwestern University, Evanston, IL 60208, Department of Medicine, Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
14
|
|
15
|
Davis EM, Benetatos NM, Regnault WF, Winey KI, Elabd YA. The influence of thermal history on structure and water transport in Parylene C coatings. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Current World Literature. Curr Opin Allergy Clin Immunol 2010; 10:400-6. [DOI: 10.1097/aci.0b013e32833d232e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|