1
|
Hoveidaei AH, Sadat-Shojai M, Mosalamiaghili S, Salarikia SR, Roghani-Shahraki H, Ghaderpanah R, Ersi MH, Conway JD. Nano-hydroxyapatite structures for bone regenerative medicine: Cell-material interaction. Bone 2024; 179:116956. [PMID: 37951520 DOI: 10.1016/j.bone.2023.116956] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Bone tissue engineering holds great promise for the regeneration of damaged or severe bone defects. However, several challenges hinder its translation into clinical practice. To address these challenges, interdisciplinary efforts and advances in biomaterials, cell biology, and bioengineering are required. In recent years, nano-hydroxyapatite (nHA)-based scaffolds have emerged as a promising approach for the development of bone regenerative agents. The unique similarity of nHA with minerals found in natural bones promotes remineralization and stimulates bone growth, which are crucial factors for efficient bone regeneration. Moreover, nHA exhibits desirable properties, such as strong chemical interactions with bone and facilitation of tissue growth, without inducing inflammation or toxicity. It also promotes osteoblast survival, adhesion, and proliferation, as well as increasing alkaline phosphatase activity, osteogenic differentiation, and bone-specific gene expression. However, it is important to note that the effect of nHA on osteoblast behavior is dose-dependent, with cytotoxic effects observed at higher doses. Additionally, the particle size of nHA plays a crucial role, with smaller particles having a more significant impact. Therefore, in this review, we highlighted the potential of nHA for improving bone regeneration processes and summarized the available data on bone cell response to nHA-based scaffolds. In addition, an attempt is made to portray the current status of bone tissue engineering using nHA/polymer hybrids and some recent scientific research in the field.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Seyedarad Mosalamiaghili
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Rezvan Ghaderpanah
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hamed Ersi
- Evidence Based Medicine Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Clinical Research Development Center of Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Janet D Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
2
|
Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, Shi TL, Chen W. Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol 2024; 14:1276849. [PMID: 38239192 PMCID: PMC10794889 DOI: 10.3389/fphar.2023.1276849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024] Open
Abstract
Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.
Collapse
Affiliation(s)
- Meng-Xuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Liu
- Department of Pharmacy, Cangzhou People’s Hospital, Cangzhou, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yu-Qin Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Tai-Long Shi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Barbosa F, Garrudo FFF, Alberte PS, Resina L, Carvalho MS, Jain A, Marques AC, Estrany F, Rawson FJ, Aléman C, Ferreira FC, Silva JC. Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2242242. [PMID: 37638280 PMCID: PMC10453998 DOI: 10.1080/14686996.2023.2242242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.
Collapse
Affiliation(s)
- Frederico Barbosa
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Fábio F. F. Garrudo
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Paola S. Alberte
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Leonor Resina
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Marta S. Carvalho
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Akhil Jain
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ana C. Marques
- CERENA, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Francesc Estrany
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Frankie J. Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Carlos Aléman
- Departament d’Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Talouki PY, Tackallou SH, Shojaei S, Benisi SZ, Goodarzi V. The role of three-dimensional scaffolds based on polyglycerol sebacate/ polycaprolactone/ gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Biol Proced Online 2023; 25:9. [PMID: 36964481 PMCID: PMC10039520 DOI: 10.1186/s12575-023-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Tissue engineering for cartilage regeneration has made great advances in recent years, although there are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds based on polyglycerol sebacate (PGS) / polycaprolactone (PCL) / gelatin(Gel) in the presence of Nanohydroxyapatite (nHA). MATERIALS AND METHODS In this study, a series of nHA-nanocomposite scaffolds were fabricated using 100:0:0, 60:40:0, and 60:20:20 weight ratios of PGS to PCL: Gel copolymers through salt leaching method. The morphology and porosity of prepared samples was characterized by SEM and EDX mapping analysis. Also, the dynamic contact angle and PBS adsorption tests are used to identify the effect of copolymerization and nanoparticles on scaffolds' hydrophilicity. The hydrolytic degradation properties were also analyzed. Furthermore, cell viability and proliferation as well as cell adhesion are evaluated to find out the biocompatibility. To determine the potential ability of nHA-nanocomposite scaffolds in chondrogenic differentiation, RT-PCR assay was performed to monitor the expression of collagen II, aggrecan, and Sox9 genes as markers of cartilage differentiation. RESULTS The nanocomposites had an elastic modulus within a range of 0.71-1.30 MPa and 0.65-0.43 MPa, in dry and wet states, respectively. The PGS/PCL sample showed a water contact angle of 72.44 ± 2.2°, while the hydrophilicity significantly improved by adding HA nanoparticles. It was found from the hydrolytic degradation study that HA incorporation can accelerate the degradation rate compared with PGS and PGS/PCL samples. Furthermore, the in vitro biocompatibility tests showed significant cell attachment, proliferation, and viability of adipose-derived mesenchymal stem cells (ADMSCs). RT-PCR also indicated a significant increase in collagen II, aggrecan and Sox9 mRNA levels. CONCLUSIONS Our findings demonstrated that these nanocomposite scaffolds promote the differentiation of hADSCs into chondrocytes possibly by the increase in mRNA levels of collagen II, aggrecan, and Sox9 as markers of chondrogenic differentiation. In conclusion, the addition of PCL, Gelatin, and HA into PGS is a practical approach to adjust the general features of PGS to prepare a promising scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Central Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Hesami Tackallou
- Department of Biology, Central Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Branch, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Central Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Branch, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
6
|
Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater 2021; 130:485-496. [PMID: 34129957 DOI: 10.1016/j.actbio.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Most fractures heal by a combination of endochondral and intramembranous ossification dependent upon strain and vascularity at the fracture site. Many biomaterials-based bone regeneration strategies rely on the use of calcium phosphates such as nano-crystalline hydroxyapatite (nHA) to create bone-like scaffolds. In this study, nHA was dispersed in reactive polymers to form composite scaffolds that were evaluated both in vitro and in vivo. Matrix assays, immunofluorescent staining, and Western blots demonstrated that nHA influenced mineralization and subsequent osteogenesis in a dose-dependent manner in vitro. Furthermore, nHA dispersed in polymeric composites promoted osteogenesis by a similar mechanism as particulated nHA. Scaffolds were implanted into a 2-mm defect in the femoral diaphysis or metaphysis of Sprague-Dawley rats to evaluate new bone formation at 4 and 8 weeks. Two formulations were tested: a poly(thioketal urethane) scaffold without nHA (PTKUR) and a PTKUR scaffold augmented with 22 wt% nHA (22nHA). The scaffolds supported new bone formation in both anatomic sites. In the metaphysis, augmentation of scaffolds with nHA promoted an intramembranous healing response. Within the diaphysis, nHA inhibited endochondral ossification. Immunohistochemistry was performed on cryo-sections of the bone/scaffold interface in which CD146, CD31, Endomucin, CD68, and Myeloperoxidase were evaluated. No significant differences in the infiltrating cell populations were observed. These findings suggest that nHA dispersed in polymeric composites induces osteogenic differentiation of adherent endogenous cells, which has skeletal site-specific effects on fracture healing. STATEMENT OF SIGNIFICANCE: Understanding the mechanism by which synthetic scaffolds promote new bone formation in preclinical models is crucial for bone regeneration applications in the clinic where complex fracture cases are seen. In this study, we found that dispersion of nHA in polymeric scaffolds promoted in vitro osteogenesis in a dose-dependent manner through activation of the PiT1 receptor and subsequent downstream Erk1/2 signaling. While augmentation of polymeric scaffolds with nHA enhanced intramembranous ossification in metaphyseal defects, it inhibited endochondral ossification in diaphyseal defects. Thus, our findings provide new insights into designing synthetic bone grafts that complement the skeletal site-specific fracture healing response.
Collapse
|
7
|
The Use of Bioactive Polymers for Intervention and Tissue Engineering: The New Frontier for Cardiovascular Therapy. Polymers (Basel) 2021; 13:polym13030446. [PMID: 33573282 PMCID: PMC7866823 DOI: 10.3390/polym13030446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Coronary heart disease remains one of the leading causes of death in most countries. Healthcare improvements have seen a shift in the presentation of disease with a reducing number of ST-segment elevation myocardial infarctions (STEMIs), largely due to earlier reperfusion strategies such as percutaneous coronary intervention (PCI). Stents have revolutionized the care of these patients, but the long-term effects of these devices have been brought to the fore. The conceptual and technologic evolution of these devices from bare-metal stents led to the creation and wide application of drug-eluting stents; further research introduced the idea of polymer-based resorbable stents. We look at the evolution of stents and the multiple advantages and disadvantages offered by each of the different polymers used to make stents in order to identify what the stent of the future may consist of whilst highlighting properties that are beneficial to the patient alongside the role of the surgeon, the cardiologist, engineers, chemists, and biophysicists in creating the ideal stent.
Collapse
|
8
|
Huang J, Huang Z, Liang Y, Yuan W, Bian L, Duan L, Rong Z, Xiong J, Wang D, Xia J. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci 2021; 9:2620-2630. [DOI: 10.1039/d0bm02103b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hUCB-MSC-laden 3D printed gelatin/HAP scaffold effectively repairs knee cartilage defects in a pig model.
Collapse
|
9
|
Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering. Biomed Mater 2020; 16. [PMID: 33291092 DOI: 10.1088/1748-605x/abd1ba] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Osteochondral (OC) matrix design poses a significant engineering challenge due to the complexity involved with bone-cartilage interfaces. To better facilitate the regeneration of OC tissue, we developed and evaluated a biodegradable matrix with uniquely arranged bone and cartilage supporting phases: a poly(lactic-co-glycolic) acid (PLGA) template structure with a porosity gradient along its longitudinal axis uniquely integrated with hyaluronic acid hydrogel. Micro-CT scanning and imaging confirmed the formation of an inverse gradient matrix. Hydroxyapatite was added to the PLGA template which was then plasma-treated to increase hydrophilicity and growth factor affinity. An osteogenic growth factor (bone morphogenetic protein 2; BMP-2) was loaded onto the template scaffold via adsorption, while a chondrogenic growth factor (transforming growth factor beta 1; TGF-β1) was incorporated into the hydrogel phase. Confocal microscopy of the growth factor loaded matrix confirmed the spatial distribution of the two growth factors, with chondrogenic factor confined to the cartilaginous portion and osteogenic factor present throughout the scaffold. We observed spatial differentiation of human mesenchymal stem cells (hMSCs) into cartilage and bone cells in the scaffolds in vitro: cartilaginous regions were marked by increased glycosaminoglycan production, and osteogenesis was seen throughout the graft by alizarin red staining. In a dose-dependent study of BMP-2, hMSC pellet cultures with TGF-β1 and BMP-2 showed synergistic effects on chondrogenesis. These results indicate that development of an inverse gradient matrix can spatially distribute two different growth factors to facilitate chondrogenesis and osteogenesis along different portions of a scaffold, which are key steps needed for formation of an osteochondral interface.
Collapse
Affiliation(s)
- Deborah Leonie Dorcemus
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Hyun Sung Kim
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Syam Prasad Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| |
Collapse
|
10
|
Pradeep A, Rangasamy J, Varma PK. Recent developments in controlling sternal wound infection after cardiac surgery and measures to enhance sternal healing. Med Res Rev 2020; 41:709-724. [PMID: 33174619 DOI: 10.1002/med.21758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
One of the major risks of cardiac surgery is the occurrence of infection at the sternal wound site. Sternal wound infections are primarily classified into superficial infection and deep sternal wound infection or mediastinitis. A patient is diagnosed with mediastinitis if microorganisms are present in their mediastinal tissue/fluid or with the observation of sternal wound infection during operation and with characteristic symptoms including chest pain, fever, and purulent drainage from the mediastinum. It is usually caused by Staphylococcal organisms in 75.8% of cases and the rest is caused by gram-negative bacteria. Currently, in cardiac surgery, hemostasis is achieved using electrocautery and bone wax, and the sternum is closed using wire cerclage. Several studies show that bone wax can act as a nidus for initiation of infection and the oozing blood and hematoma at the site can promote the growth of infectious organisms. Many research groups have developed different types of biomaterials and reported on the prevention of infection and healing of the sternum. These materials are reported to have both positive and negative effects. In this review, we highlight the current clinical practices undertaken to prevent infection and bleeding as well as research progress in this field and their outcomes in controlling bleeding, infection, and enhancing sternal healing.
Collapse
Affiliation(s)
- Aathira Pradeep
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Praveen Kerala Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
11
|
Leonés A, Mujica-Garcia A, Arrieta MP, Salaris V, Lopez D, Kenny JM, Peponi L. Organic and Inorganic PCL-Based Electrospun Fibers. Polymers (Basel) 2020; 12:polym12061325. [PMID: 32532052 PMCID: PMC7361952 DOI: 10.3390/polym12061325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, different nanocomposite electrospun fiber mats were obtained based on poly(e-caprolactone) (PCL) and reinforced with both organic and inorganic nanoparticles. In particular, on one side, cellulose nanocrystals (CNC) were synthesized and functionalized by "grafting from" reaction, using their superficial OH- group to graft PCL chains. On the other side, commercial chitosan, graphene as organic, while silver, hydroxyapatite, and fumed silica nanoparticles were used as inorganic reinforcements. All the nanoparticles were added at 1 wt% with respect to the PCL polymeric matrix in order to compare the different behavior of the woven no-woven nanocomposite electrospun fibers with a fixed amount of both organic and inorganic nanoparticles. From the thermal point of view, no difference was found between the effect of the addition of organic or inorganic nanoparticles, with no significant variation in the Tg (glass transition temperature), Tm (melting temperature), and the degree of crystallinity, leading in all cases to high crystallinity electrospun mats. From the mechanical point of view, the highest values of Young modulus were obtained when graphene, CNC, and silver nanoparticles were added to the PCL electrospun fibers. Moreover, all the nanoparticles used, both organic and inorganic, increased the flexibility of the electrospun mats, increasing their elongation at break.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Alicia Mujica-Garcia
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM), Arcos de Jalón 118, 28037 Madrid, Spain
| | - Marina Patricia Arrieta
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Civil and Environmental Engineering Department, University of Perugia, Via G, Duranti 93, 06125 Perugia, Italy
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
| | - Daniel Lopez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - José Maria Kenny
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Civil and Environmental Engineering Department, University of Perugia, Via G, Duranti 93, 06125 Perugia, Italy
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (A.M.-G.); (M.P.A.); (V.S.); (D.L.); (J.M.K.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Tympanic Membrane Collagen Expression by Dynamically Cultured Human Mesenchymal Stromal Cell/Star-Branched Poly(ε-Caprolactone) Nonwoven Constructs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tympanic membrane (TM) primes the sound transmission mechanism due to special fibrous layers mainly of collagens II, III, and IV as a product of TM fibroblasts, while type I is less represented. In this study, human mesenchymal stromal cells (hMSCs) were cultured on star-branched poly(ε-caprolactone) (*PCL)-based nonwovens using a TM bioreactor and proper differentiating factors to induce the expression of the TM collagen types. The cell cultures were carried out for one week under static and dynamic conditions. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were used to assess collagen expression. A Finite Element Model was applied to calculate the stress distribution on the scaffolds under dynamic culture. Nanohydroxyapatite (HA) was used as a filler to change density and tensile strength of *PCL scaffolds. In dynamically cultured *PCL constructs, fibroblast surface marker was overexpressed, and collagen type II was revealed via IHC. Collagen types I, III and IV were also detected. Von Mises stress maps showed that during the bioreactor motion, the maximum stress in *PCL was double that in HA/*PCL scaffolds. By using a *PCL nonwoven scaffold, with suitable physico-mechanical properties, an oscillatory culture, and proper differentiative factors, hMSCs were committed into fibroblast lineage-producing TM-like collagens.
Collapse
|
13
|
Spadaccio C, Hu H, Li C, Qiao Z, Ge Y, Tie Z, Zhu J, Moon MR, Danton M, Sun L, Gaudino MF. Thoracic aortic surgery: status and upcoming novelties. Minerva Cardioangiol 2020; 68:518-531. [PMID: 32319269 DOI: 10.23736/s0026-4725.20.05263-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several novel technological developments and surgical approaches have characterized the field of aortic surgery in the recent decade. The progressive introduction of endovascular procedures, minimally invasive surgical techniques and hybrid approaches have changed the practice in aortic surgery and generated new trends and questions. Also, the advancements in the manufacturing of tissue engineered vascular grafts as substitutes for aortic replacements are enlightening new avenues in the treatment of aortic disease. This review will provide an overview of the current novel perspectives, debates and trends in major thoracic aortic surgery.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK - .,Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK - .,Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China -
| | - Haiou Hu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Chengnan Li
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Zhiyu Qiao
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Zheng Tie
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Marc R Moon
- School of Medicine, Washington University, St Louis, MI, USA
| | - Mark Danton
- Department of Cardiac Surgery, Scottish Pediatric Cardiac Services, Royal Hospital for Children, Glasgow, UK
| | - Lizhong Sun
- Department of Cardiovascular Surgery, Beijing Aortic Disease Centre, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Centre for Vascular Prostheses, Capital Medical University, Beijing, China
| | - Mario F Gaudino
- Department of Cardiothoracic Surgery Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
14
|
Sharifi F, Irani S, Azadegan G, Pezeshki-Modaress M, Zandi M, Saeed M. Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Marycz K, Smieszek A, Targonska S, Walsh SA, Szustakiewicz K, Wiglusz RJ. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu 3+) composite for osteochondral defect regeneration and theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110634. [PMID: 32204070 DOI: 10.1016/j.msec.2020.110634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
In the current research previously developed composites composed from poly (l-lactide) (PLLA) and nano-hydroxyapatite (10 wt% nHAp/PLLA) were functionalized with different concentrations of europium (III) (Eu3+). The aim of this study was to determine whether Eu3+ ions doped within the 10 wt% nHAp/PLLA scaffolds will improve the bioactivity of composites. Therefore, first set of experiments was designed to evaluate the effect of Eu3+ ions on morphology, viability, proliferation and metabolism of progenitor cells isolated from adipose tissue (hASC). Three different concentration were tested i.e. 1 mol%, 3 mol% and 5%mol. We identified the 10 wt% nHAp/PLLA@3 mol% Eu3+ scaffolds as the most cytocompatible. Further, we investigated the influence of the composites doped with 3 mol% Eu3+ ions on differentiation of hASC toward bone and cartilage forming cells. Our results showed that 10 wt% nHAp/PLLA@3 mol% Eu3+ scaffolds promotes osteogenesis and chondrogenesis of hASCs what was associated with improved synthesis and secretion of extracellular matrix proteins specific for bone and articular cartilage tissue. We also proved that obtained biomaterials have bio-imaging function and their integration with bone can be monitored using micro computed tomography (μCT).
Collapse
Affiliation(s)
- Krzysztof Marycz
- University of Environmental and Life Sciences Wroclaw, The Department of Experimental Biology, The Faculty of Biology and Animal Science, 38 C Chelmonskiego St., 50-630 Wroclaw, Poland; Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- University of Environmental and Life Sciences Wroclaw, The Department of Experimental Biology, The Faculty of Biology and Animal Science, 38 C Chelmonskiego St., 50-630 Wroclaw, Poland
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Konrad Szustakiewicz
- Polymer Engineering and Technology Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
16
|
Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng 2020; 11:2041731420943839. [PMID: 32922718 PMCID: PMC7457700 DOI: 10.1177/2041731420943839] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Cartilage injuries are typically caused by trauma, chronic overload, and autoimmune diseases. Owing to the avascular structure and low metabolic activities of chondrocytes, cartilage generally does not self-repair following an injury. Currently, clinical interventions for cartilage injuries include chondrocyte implantation, microfracture, and osteochondral transplantation. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Stem cell therapies, especially mesenchymal stem cell (MSCs) therapies, were found to be a feasible strategy in the treatment of cartilage injuries. MSCs can easily be isolated from mesenchymal tissue and be differentiated into chondrocytes with the support of chondrogenic factors or scaffolds to repair damaged cartilage tissue. In this review, we highlighted the full success of cartilage repair using MSCs, or MSCs in combination with chondrogenic factors and scaffolds, and predicted their pros and cons for prospective translation to clinical practice.
Collapse
Affiliation(s)
- Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| |
Collapse
|
17
|
Asgari V, Landarani-Isfahani A, Salehi H, Amirpour N, Hashemibeni B, Rezaei S, Bahramian H. The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochem Res 2019; 44:2695-2707. [DOI: 10.1007/s11064-019-02900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
|
18
|
Nenna A, Nappi F, Dougal J, Satriano U, Chello C, Mastroianni C, Lusini M, Chello M, Spadaccio C. Sternal wound closure in the current era: the need of a tailored approach. Gen Thorac Cardiovasc Surg 2019; 67:907-916. [PMID: 31531834 DOI: 10.1007/s11748-019-01204-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Median sternotomy remains the most common access to perform cardiac surgery procedures. However, the experience of the operating surgeon remains a crucial factor during sternal closure to avoid potential complications related to poor sternal healing, such as mediastinitis. Considering the lack of major randomized controlled trials and the heterogeneity of the current literature, this narrative review aims to summarize the different techniques and approaches to sternal closure with the aim to investigate their reflections into clinical outcomes and to inform the choice on the most effective closure method after median sternotomy. METHODS A literature search through PubMed, Embase, EBSCO, Cochrane database of systematic reviews, and Web of Science from its inception up to April 2019 using the following search keywords in various combinations: sternal, sternotomy, mediastinitis, deep sternal wound infection, cardiac surgery, closure. RESULTS Single wire fixation methods, at present, seems the most useful method to perform sternal closure in routine patients, although patients with a fragile sternum might benefit more from a figure-of-eight technique. In high-risk patients (e.g. chronic pulmonary disease, obesity, bilateral internal mammary artery harvesting, diabetes, off-midline sternotomy), rigid plate fixation is currently the most effective method, if available; alternatively, weave techniques could be used. CONCLUSION The choice among the sternal closure techniques should be mainly inspired and tailored on the patient's characteristics, and correct judgement and experience play a pivotal role. A decisional algorithm has been proposed as an attempt to overcome the absence of specific guidelines and to guide the operative approach. This operative approach might be used also in non-cardiac procedure in which median sternotomy is required, such as in case of thoracic surgery.
Collapse
Affiliation(s)
- Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy.
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Jennifer Dougal
- Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK
| | - Umberto Satriano
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Camilla Chello
- Dermatology, University of Rome "La Sapienza", Rome, Italy
| | - Ciro Mastroianni
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | | |
Collapse
|
19
|
Deng C, Xu C, Zhou Q, Cheng Y. Advances of nanotechnology in osteochondral regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1576. [PMID: 31329375 DOI: 10.1002/wnan.1576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In the past few decades, nanotechnology has proven to be one of the most powerful engineering strategies. The nanotechnologies for osteochondral tissue engineering aim to restore the anatomical structures and physiological functions of cartilage, subchondral bone, and osteochondral interface. As subchondral bone and articular cartilage have different anatomical structures and the physiological functions, complete healing of osteochondral defects remains a great challenge. Considering the limitation of articular cartilage to self-healing and the complexity of osteochondral tissue, osteochondral defects are in urgently need for new therapeutic strategies. This review article will concentrate on the most recent advancements of nanotechnologies, which facilitates chondrogenic and osteogenic differentiation for osteochondral regeneration. Moreover, this review will also discuss the current strategies and physiological challenges for the regeneration of osteochondral tissue. Specifically, we will summarize the latest developments of nanobased scaffolds for simultaneously regenerating subchondral bone and articular cartilage tissues. Additionally, perspectives of nanotechnology in osteochondral tissue engineering will be highlighted. This review article provides a comprehensive summary of the latest trends in cartilage and subchondral bone regeneration, paving the way for nanotechnologies in osteochondral tissue engineering. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Xu
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Wieszczycka K, Staszak K, Woźniak-Budych MJ, Jurga S. Lanthanides and tissue engineering strategies for bone regeneration. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Touny AH, Saleh MM, Abd El-Lateef HM, Saleh MM. Electrochemical methods for fabrication of polymers/calcium phosphates nanocomposites as hard tissue implants. APPLIED PHYSICS REVIEWS 2019; 6. [DOI: 10.1063/1.5045339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing and manipulating new biomaterials is an ongoing topic for their needs in medical uses. The evolution and development of new biomaterials, in both the academic and industrial sectors, have been encouraged due to the dramatic improvement in medicine and medical-related technologies. Due to the drawbacks associated with natural biomaterials, the use of synthetic biomaterials is preferential due to basic and applied aspects. Various techniques are involved in fabricating biomaterials. Among them are the electrochemical-based methods, which include electrodeposition and electrophoretic methods. Although electrospinning and electrospraying are not typical electrochemical methods, they are also reviewed in this article due to their importance. Many remarkable features can be acquired from this technique. Electrodeposition and electrophoretic deposition are exceptional and valuable processes for fabricating thin or thick coated films on a surface of metallic implants. Electrodeposition and electrophoretic deposition have some common positive features. They can be used at low temperatures, do not affect the structure of the implant, and can be applied to complex shapes, and they can produce superior properties, such as quick and uniform coating. Furthermore, they can possibly control the thickness and chemical composition of the coatings. Electrospinning is a potentially emerging and efficient process for producing materials with nanofibrous structures, which have exceptional characteristics such as mechanical properties, pore size, and superior surface area. These specialized characteristics induce these nanostructured materials to be used in different technologies.
Collapse
Affiliation(s)
- Ahmed H. Touny
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Helwan University 2 , Helwan, Egypt
| | - Mohamed M. Saleh
- Wake Forest Institute for Regenerative Medicine 3 , Winston Salem, North Carolina 27103, USA
| | - Hany M. Abd El-Lateef
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Chemistry Department, College of Science, Sohag University 4 , Sohag, Egypt
| | - Mahmoud M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University 5 , Cairo, Egypt
| |
Collapse
|
22
|
Honarpardaz A, Irani S, Pezeshki-Modaress M, Zandi M, Sadeghi A. Enhanced chondrogenic differentiation of bone marrow mesenchymal stem cells on gelatin/glycosaminoglycan electrospun nanofibers with different amount of glycosaminoglycan. J Biomed Mater Res A 2018; 107:38-48. [PMID: 30408321 DOI: 10.1002/jbm.a.36501] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022]
Abstract
Tissue engineering is a new technique to help damaged cartilage treatment using cells and scaffolds. In this study we tried to evaluate electrospun scaffolds composed of gelatin/glycosaminoglycan (G/GAG) blend nanofibers in chondrogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). Scaffolds were fabricated by electrospinning technique with different concentration of glycosaminoglycan (0%, 5%, 10%, and 15%) in gelatin matrix. BMMSCs were cultured on the scaffolds for chondrogenesis process. MTT assay was done for scaffold's biocompatibility and cells viability evaluation. Alcian blue staining was carried out to determine the release of GAG and reverse transcription polymerase chain reaction (RT-PCR) was done for expression of COL2A1 and also immunocytochemistry assay were used to confirm expression of type II collagen. Scaffold with 15% GAG showed better result for biocompatibility (p =0.02). Scanning electron microscopy (SEM) micrographs showed that MSCs have good attachment to the scaffolds. Alcian blue staining result confirmed that cells produce GAG during differentiation time different from GAG in the scaffolds. Also the results for RT-PCR showed the expression of COL2A1 marker. Immunocytochemistry assay for type II collagen confirm that this protein expressed. Scaffold comprising 15% GAG is better results for chondrogenesis and it can be a good applicant for cartilage tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 38-48, 2019.
Collapse
Affiliation(s)
- Ali Honarpardaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amin Sadeghi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Ortega Z, Alemán ME, Donate R. Nanofibers and Microfibers for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:97-123. [PMID: 29691819 DOI: 10.1007/978-3-319-76711-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of fibers into scaffolds is a way to mimic natural tissues, in which fibrils are embedded in a matrix. The use of fibers can improve the mechanical properties of the scaffolds and may act as structural support for cell growth. Also, as the morphology of fibrous scaffolds is similar to the natural extracellular matrix, cells cultured on these scaffolds tend to maintain their phenotypic shape. Different materials and techniques can be used to produce micrfibers- and nanofibers for scaffolds manufacturing; cells, in general, adhere and proliferate very well on PCL, chitosan, silk fibroin, and other nanofibers. One of the most important techniques to produce microfibers/nanofibers is electrospinning. Nanofibrous scaffolds are receiving increasing attention in bone tissue engineering, because they are able to offer a favorable microenvironment for cell attachment and growth. Different polymers can be electrospun, i.e., polyester, polyurethane, PLA, PCL, collagen, and silk. Other materials such as bioglass fibers, nanocellulose, and even carbon fiber and fabrics have been used to help increase bioactivity, mechanical properties of the scaffold, and cell proliferation. A compilation of mechanical properties and most common biological tests performed on fibrous scaffolds is included in this chapter. HIGHLIGHTS The use of microfibers and nanofibers allows for tailoring the scaffold properties. Electrospinning is one of the most important techniques nowadays to produce fibrous scaffolds. Microfibers and nanofibers use in scaffolds is a promising field to improve the behavior of scaffolds in osteochondral applications.
Collapse
Affiliation(s)
- Zaida Ortega
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| | - María Elena Alemán
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ricardo Donate
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
24
|
Rainer A, Centola M, Spadaccio C, Gherardi G, Genovese JA, Licoccia S, Trombetta M. Comparative Study of Different Techniques for the Sterilization of Poly-L-lactide Electrospun Microfibers: Effectiveness vs. Material Degradation. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300203] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electrospinning of biopolymeric scaffolds is a new and effective approach for creating replacement tissues to repair defects and/or damaged tissues with direct clinical application. However, many hurdles and technical concerns regarding biological issues, such as cell retention and the ability to grow, still need to be overcome to gain full access to the clinical arena. Interaction with the host human tissues, immunogenicity, pathogen transmission as well as production costs, technical expertise, and good manufacturing and laboratory practice requirements call for careful consideration when aiming at the production of a material that is available off-the-shelf, to be used immediately in operative settings. The issue of sterilization is one of the most important steps for the clinical application of these scaffolds. Nevertheless, relatively few studies have been performed to systematically investigate how sterilization treatments may affect the properties of electrospun polymers for tissue engineering. This paper presents the results of a comparative study of different sterilization techniques applied to an electrospun poly-L-lactide scaffold: soaking in absolute ethanol, dry oven and autoclave treatments, UV irradiation, and hydrogen peroxide gas plasma treatment. Morphological and chemical characterization was coupled with microbiological sterility assay to validate the examined sterilization techniques in terms of effectiveness and modifications to the scaffold. The results of this study reveal that UV irradiation and hydrogen peroxide gas plasma are the most effective sterilization techniques, as they ensure sterility of the electrospun scaffolds without affecting their chemical and morphological features.
Collapse
Affiliation(s)
- Alberto Rainer
- Center of Integrated Research (CIR) – Laboratory of Chemistry & Biomaterials, University Campus Bio-Medico of Rome, Rome
| | - Matteo Centola
- Center of Integrated Research (CIR) – Laboratory of Chemistry & Biomaterials, University Campus Bio-Medico of Rome, Rome
| | - Cristiano Spadaccio
- CIR - Area of Cardiovascular Surgery, University Campus Bio-Medico of Rome, Rome
| | - Giovanni Gherardi
- CIR - Laboratory of Microbiology, University Campus Bio-Medico of Rome, Rome
| | - Jorge A. Genovese
- CIR - Area of Cardiovascular Surgery, University Campus Bio-Medico of Rome, Rome
| | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome
- NAST Center for Nanoscience, Nanotechnology & Innovative Instrumentation, University of Rome Tor Vergata, Rome - Italy
| | - Marcella Trombetta
- Center of Integrated Research (CIR) – Laboratory of Chemistry & Biomaterials, University Campus Bio-Medico of Rome, Rome
| |
Collapse
|
25
|
Electrospinning and microfluidics. ELECTROFLUIDODYNAMIC TECHNOLOGIES (EFDTS) FOR BIOMATERIALS AND MEDICAL DEVICES 2018. [PMCID: PMC7152487 DOI: 10.1016/b978-0-08-101745-6.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Chou CL, Rivera AL, Williams V, Welter JF, Mansour JM, Drazba JA, Sakai T, Baskaran H. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage. Acta Biomater 2017; 60:210-219. [PMID: 28709984 PMCID: PMC5581212 DOI: 10.1016/j.actbio.2017.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022]
Abstract
Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM. We previously showed that we can guide MSCs undergoing chondrogenesis to align using microscale guidance channels on the surface of a two-dimensional (2-D) collagen scaffold, which resulted in the deposition of aligned ECM within the channels and enhanced mechanical properties of the constructs. In this study, we developed a technique to roll 2-D collagen scaffolds containing MSCs within guidance channels in order to produce a large-scale, three-dimensional (3-D) tissue engineered cartilage constructs with enhanced mechanical properties compared to current constructs. After rolling the MSC-scaffold constructs into a 3-D cylindrical structure, the constructs were cultured for 21days under chondrogenic culture conditions. The microstructure architecture and mechanical properties of the constructs were evaluated using imaging and compressive testing. Histology and immunohistochemistry of the constructs showed extensive glycosaminoglycan (GAG) and collagen type II deposition. Second harmonic generation imaging and Picrosirius red staining indicated alignment of neo-collagen fibers within the guidance channels of the constructs. Mechanical testing indicated that constructs containing the guidance channels displayed enhanced compressive properties compared to control constructs without these channels. In conclusion, using a novel roll-up method, we have developed large scale MSC based tissue-engineered cartilage that shows microscale structural organization and enhanced compressive properties compared to current tissue engineered constructs. STATEMENT OF SIGNIFICANCE Tissue engineered cartilage constructs made with human mesenchymal stem cells (hMSCs), scaffolds and bioactive factors are a promising solution to treat cartilage defects. A major disadvantage of these constructs is their inferior mechanical properties compared to the native tissue, which is likely due to the lack of structural organization of the extracellular matrix of the engineered constructs. In this study, we developed three-dimensional (3-D) cartilage constructs from rectangular scaffold sheets containing hMSCs in micro-guidance channels and characterized their mechanical properties and metabolic requirements. The work led to a novel roll-up method to embed 2-D microscale structures in 3-D constructs. Further, micro-guidance channels incorporated within the 3-D cartilage constructs led to the production of aligned cell-produced matrix and enhanced mechanical function.
Collapse
Affiliation(s)
- Chih-Ling Chou
- Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Alexander L Rivera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Valencia Williams
- Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jean F Welter
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH, United States; Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, United States
| | - Joseph M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States; Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, United States
| | - Judith A Drazba
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Takao Sakai
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Harihara Baskaran
- Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH, United States; Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
27
|
Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H. Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers (Basel) 2017; 9:E387. [PMID: 30965692 PMCID: PMC6418638 DOI: 10.3390/polym9090387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
The extensive need for hard tissue substituent greatly motivates development of suitable allogeneic grafts for therapeutic recreation. Different calcium phosphate phases have been accepted as scaffold's components with positive influence on osteoinduction and differentiation of human mesenchymal stem cells, in terms of their higher fraction within the graft. Nevertheless, the creation of unlimited nutrients diffusion through newly formed grafts is of great importance. The media flow accomplished by perfusion forces can provide physicochemical, and also, biomechanical stimuli for three-dimensional bone-construct growth. In the present study, the influence of a different scaffold's composition on the human mesenchymal stem cells (hMSCs) differentiation performed in a U-CUP bioreactor under perfusion conditioning was investigated. The histological and immunohistochemical analysis of cultured bony tissues, and the evaluation of osteogenic genes' expression indicate that the lower fraction of in situ formed hydroxyapatite in the range of 10⁻30% within chitosan scaffold could be preferable for bone-construct development.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| | - Maja Antunović
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | - Lidija Pribolšan
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | | | - Andreja Vukasović
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001 Zagreb, Croatia.
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001 Zagreb, Croatia.
- Department of Orthopaedic Surgery, University Hospital, Sveti Duh, 10001 Zagreb, Croatia.
| | - Inga Marijanović
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | - Gloria Gallego Ferrer
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Biomedical Research Networking centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| |
Collapse
|
28
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
29
|
Implantation of a Poly-L-Lactide GCSF-Functionalized Scaffold in a Model of Chronic Myocardial Infarction. J Cardiovasc Transl Res 2017; 10:47-65. [PMID: 28116550 PMCID: PMC5323505 DOI: 10.1007/s12265-016-9718-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022]
Abstract
A previously developed poly-l-lactide scaffold releasing granulocyte colony-stimulating factor (PLLA/GCSF) was tested in a rabbit chronic model of myocardial infarction (MI) as a ventricular patch. Control groups were constituted by healthy, chronic MI and nonfunctionalized PLLA scaffold. PLLA-based electrospun scaffold efficiently integrated into a chronic infarcted myocardium. Functionalization of the biopolymer with GCSF led to increased fibroblast-like vimentin-positive cellular colonization and reduced inflammatory cell infiltration within the micrometric fiber mesh in comparison to nonfunctionalized scaffold; PLLA/GCSF polymer induced an angiogenetic process with a statistically significant increase in the number of neovessels compared to the nonfunctionalized scaffold; PLLA/GCSF implanted at the infarcted zone induced a reorganization of the ECM architecture leading to connective tissue deposition and scar remodeling. These findings were coupled with a reduction in end-systolic and end-diastolic volumes, indicating a preventive effect of the scaffold on ventricular dilation, and an improvement in cardiac performance.
Collapse
|
30
|
Dayem AA, Choi HY, Yang GM, Kim K, Saha SK, Kim JH, Cho SG. The potential of nanoparticles in stem cell differentiation and further therapeutic applications. Biotechnol J 2016; 11:1550-1560. [PMID: 27797150 DOI: 10.1002/biot.201600453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022]
Abstract
Tissue regeneration could offer therapeutic advantages for individuals experiencing organ or tissue damage. Recently, advances in nanotechnology have provided various nanomaterials, with a wide range of applications, for modulating stem cell behavior and for further therapeutic applications in tissue regeneration. Defects in cell proliferation and differentiation, a low mechanical strength of scaffolds, and inefficient production of factors that are essential for stem cell differentiation are the current challenges in tissue regeneration. This review provides a brief explanation about the link between nanotechnology and tissue engineering, highlighting the current literature about the interaction between nanoparticles (NPs) and stem cells, the promotional effect of NPs on stem cell differentiation into various lineages, and their possible therapeutic applications. We also tried to describe the mechanism through which NPs regulate the spatial-temporal release and kinetics of vital growth and differentiation factors, enhance stem cell differentiation, and improve culture conditions for in vivo tissue regeneration. The field of nanotechnology is promising and provides novel nanomaterials and methods with valuable clinical applications in the regenerative medicine. Understanding the mechanism, as well as the toxic effects of NPs in stem cell biology will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
31
|
Reboredo JW, Weigel T, Steinert A, Rackwitz L, Rudert M, Walles H. Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five-Layered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure. Adv Healthc Mater 2016; 5:2191-8. [PMID: 27185494 DOI: 10.1002/adhm.201600134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/30/2016] [Indexed: 11/06/2022]
Abstract
Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage.
Collapse
Affiliation(s)
- Jenny W. Reboredo
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Tobias Weigel
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Andre Steinert
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Lars Rackwitz
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Maximilian Rudert
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
- Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Diseases” Würzburg Branch; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Röntgenring 11 97070 Würzburg Germany
| |
Collapse
|
32
|
Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci 2016; 4:734-67. [PMID: 26923076 DOI: 10.1039/c6bm00068a] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
33
|
Spadaccio C, Nappi F, De Marco F, Sedati P, Sutherland FWH, Chello M, Trombetta M, Rainer A. Preliminary In Vivo Evaluation of a Hybrid Armored Vascular Graft Combining Electrospinning and Additive Manufacturing Techniques. Drug Target Insights 2016; 10:1-7. [PMID: 26949333 PMCID: PMC4772909 DOI: 10.4137/dti.s35202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/05/2022] Open
Abstract
In this study, we tested in vivo effectiveness of a previously developed poly-l-lactide/poly-ε-caprolactone armored vascular graft releasing heparin. This bioprosthesis was designed in order to overcome the main drawbacks of tissue-engineered vascular grafts, mainly concerning poor mechanical properties, thrombogenicity, and endothelialization. The bioprosthesis was successfully implanted in an aortic vascular reconstruction model in rabbits. All grafts implanted were patent at four weeks postoperatively and have been adequately populated by endogenous cells without signs of thrombosis or structural failure and with no need of antiplatelet therapy. The results of this preliminary study might warrant for further larger controlled in vivo studies to further confirm these findings.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Dunbartonshire, UK
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Federico De Marco
- Laboratory of Virology, The Regina Elena National Cancer Institute, Rome, Italy
| | - Pietro Sedati
- Unit of Imaging and Diagnostics, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fraser W H Sutherland
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Dunbartonshire, UK
| | - Massimo Chello
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
34
|
Zhang N, Xiao QR, Man XY, Liu HX, Lü LX, Huang NP. Spontaneous osteogenic differentiation of mesenchymal stem cells on electrospun nanofibrous scaffolds. RSC Adv 2016. [DOI: 10.1039/c5ra22578g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite-containing PHBV nanofibrous scaffolds accelerate osteogenic differentiation of MSCs by activating the related signaling pathways.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Qian-Ru Xiao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Xin-Yao Man
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Hai-Xia Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Lan-Xin Lü
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
35
|
PRP and articular cartilage: a clinical update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:542502. [PMID: 26075244 PMCID: PMC4436454 DOI: 10.1155/2015/542502] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.
Collapse
|
36
|
Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, Imani M, Mahmoudi M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10:829-47. [DOI: 10.2217/nnm.14.225] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are increasingly studied because of their potential to underpin a range of novel therapies, including regenerative strategies, cell type-specific therapy and tissue repair, among others. Bionanomaterials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. New advances in these fields are presented in this review. This work highlights the importance of topography and elasticity of the nano-/micro-environment, or niche, for the initiation and induction of stem cell differentiation and proliferation.
Collapse
Affiliation(s)
- Omid Mashinchian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, PO Box 14177–55469, Tehran, Iran
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
- CMMI – Center for Microscopy & Molecular Imaging, Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, PO Box 13169–43551, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer & Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155–6451, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
| |
Collapse
|
37
|
Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S. Regenerative nanomedicine: current perspectives and future directions. Int J Nanomedicine 2014; 9:4153-67. [PMID: 25214780 PMCID: PMC4159316 DOI: 10.2147/ijn.s45332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.
Collapse
Affiliation(s)
- Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Vishu Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Jayaprakash Kandasamy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
38
|
Balaji Raghavendran HR, Puvaneswary S, Talebian S, Raman Murali M, Vasudevaraj Naveen S, Krishnamurithy G, McKean R, Kamarul T. A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS One 2014; 9:e104389. [PMID: 25140798 PMCID: PMC4139278 DOI: 10.1371/journal.pone.0104389] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200–950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
Collapse
Affiliation(s)
- Hanumantha Rao Balaji Raghavendran
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (HBR); (TK)
| | - Subramaniam Puvaneswary
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sepehr Talebian
- Department of Mechanical Engineering, Engineering Faculty, University of Malaya, Kuala Lumpur, Malaysia
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sangeetha Vasudevaraj Naveen
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - G. Krishnamurithy
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Robert McKean
- The Electrospinning Company Ltd, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigative Centre, Faculty of Medicine, University Malaya Medical Center, Kuala Lumpur, Malaysia
- * E-mail: (HBR); (TK)
| |
Collapse
|
39
|
Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering. MATERIALS 2014; 7:5327-5355. [PMID: 28788131 PMCID: PMC5455822 DOI: 10.3390/ma7075327] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022]
Abstract
This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided.
Collapse
|
40
|
Bone marrow derived stem cells in joint and bone diseases: a concise review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1787-801. [PMID: 25005462 DOI: 10.1007/s00264-014-2445-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/21/2014] [Indexed: 12/11/2022]
Abstract
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
Collapse
|
41
|
Liverani L, Abbruzzese F, Mozetic P, Basoli F, Rainer A, Trombetta M. Electrospinning of hydroxyapatite-chitosan nanofibers for tissue engineering applications. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Liliana Liverani
- Tissue Engineering Lab; Università Campus Bio-Medico di Roma; Rome Italy
- UCBM-CNR Joint Lab for Nanotechnologies for the Life Sciences (Nano4Life); Rome Italy
| | - Franca Abbruzzese
- Tissue Engineering Lab; Università Campus Bio-Medico di Roma; Rome Italy
- UCBM-CNR Joint Lab for Nanotechnologies for the Life Sciences (Nano4Life); Rome Italy
| | - Pamela Mozetic
- Tissue Engineering Lab; Università Campus Bio-Medico di Roma; Rome Italy
- UCBM-CNR Joint Lab for Nanotechnologies for the Life Sciences (Nano4Life); Rome Italy
| | - Francesco Basoli
- Department of Chemical Science and Technologies; University of Rome ‘Tor Vergata’; Rome Italy
| | - Alberto Rainer
- Tissue Engineering Lab; Università Campus Bio-Medico di Roma; Rome Italy
- UCBM-CNR Joint Lab for Nanotechnologies for the Life Sciences (Nano4Life); Rome Italy
| | - Marcella Trombetta
- Tissue Engineering Lab; Università Campus Bio-Medico di Roma; Rome Italy
- UCBM-CNR Joint Lab for Nanotechnologies for the Life Sciences (Nano4Life); Rome Italy
| |
Collapse
|
42
|
Seyedmahmoud R, Rainer A, Mozetic P, Maria Giannitelli S, Trombetta M, Traversa E, Licoccia S, Rinaldi A. A primer of statistical methods for correlating parameters and properties of electrospun poly(l-lactide) scaffolds for tissue engineering-PART 1: Design of experiments. J Biomed Mater Res A 2014; 103:91-102. [DOI: 10.1002/jbm.a.35153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Rasoul Seyedmahmoud
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; 00133 Rome Italy
| | - Alberto Rainer
- Tissue Engineering Laboratory; CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; 00128 Rome Italy
| | - Pamela Mozetic
- Tissue Engineering Laboratory; CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; 00128 Rome Italy
| | - Sara Maria Giannitelli
- Tissue Engineering Laboratory; CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; 00128 Rome Italy
| | - Marcella Trombetta
- Tissue Engineering Laboratory; CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; 00128 Rome Italy
| | - Enrico Traversa
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; 00133 Rome Italy
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Silvia Licoccia
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; 00133 Rome Italy
| | - Antonio Rinaldi
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; 00133 Rome Italy
- ENEA, CR Casaccia, Via Anguillarese 301; Santa Maria di Galeria, 00123 Rome Italy
- International Research Center for Mathematics & Mechanics of Complex Systems, University of L'Aquila; Via S. Pasquale, 04012 Cisterna di Latina (LT) Italy
| |
Collapse
|
43
|
Sotoudeh A, Jahanshahi A, Takhtfooladi MA, Bazazan A, Ganjali A, Harati MP. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit. Acta Cir Bras 2014; 28:340-5. [PMID: 23702935 DOI: 10.1590/s0102-86502013000500004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/22/2013] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Articular Cartilage has limited potential for self-repair and tissue engineering approaches attempt to repair articular cartilage by scaffolds. We hypothesized that the combined hydroxyapatite and zirconia stabilized yttria would enhance the quality of cartilage healing. METHODS In ten New Zealand white rabbits bilateral full-thickness osteochondral defect, 4 mm in diameter and 3 mm depth, was created on the articular cartilage of the patellar groove of the distal femur. In group I the scaffold was implanted into the right stifle and the same defect was created in the left stifle without any transplant (group II). Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. RESULTS In group I the defect was filled with a white translucent cartilage tissue In contrast, the defects in the group II remained almost empty. In the group I, the defects were mostly filled with hyaline-like cartilage evidenced but defects in group II were filled with fibrous tissue with surface irregularities. Positive immunohistochemical staining of type-II collagen was observed in group I and it was absent in the control group. CONCLUSION The hydroxyapatite/yttria stabilized zirconia scaffold would be an effective scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Amir Sotoudeh
- Faculty of Veterinary Science, Islamic Azad University, Kerman, Iran.
| | | | | | | | | | | |
Collapse
|
44
|
Correia SI, Pereira H, Silva-Correia J, Van Dijk CN, Espregueira-Mendes J, Oliveira JM, Reis RL. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface 2013; 11:20130784. [PMID: 24352667 PMCID: PMC3899856 DOI: 10.1098/rsif.2013.0784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.
Collapse
Affiliation(s)
- S I Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães 4806-909, Portugal
| | | | | | | | | | | | | |
Collapse
|
45
|
Meng F, He A, Zhang Z, Zhang Z, Lin Z, Yang Z, Long Y, Wu G, Kang Y, Liao W. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. J Biomed Mater Res A 2013; 102:2725-35. [PMID: 24026971 DOI: 10.1002/jbm.a.34948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/31/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022]
Abstract
Application of chondrogenic growth factors is a routine strategy to induce chondrogenesis of hMSCs, but they have economic and safety problems in the long term. It is expected that scaffold material itself could play an important role in chondrogenesis of hMSCs. In this study we tested whether a novel tricalcium phosphate-collagen-hyaluronan scaffold (TCP-COL-HA) had inherent chondro-inductive capacity for chondrogenesis of both ATDC5 and hMSCs without any exogenous growth factors in vitro. hMSCs and ATDC5 were seeded onto TCP-COL-HA scaffolds and cultured in basal medium for 3 weeks to investigate whether the TCP-COL-HA scaffold itself had differentiation-inductive capacity in basal culture. With hMSCs-seeded scaffold in chondrogenic medium (including TGF-β1) as positive control, we then compared the chondrogenic induction of TCP-COL-HA in basal culture and in chondrogenic culture. The chondrogenic differentiation was evaluated by sulfated glycosaminoglycans (GAGs) quantification, type II collagen immunohistochemistry, and RT-PCR. Mechanical strength was evaluated by compression test and the cell death rate of hMSCs was assessed with TUNEL assay. The results showed TCP-COL-HA scaffold itself could efficiently induce chondrogenic differentiation of both ATDC5 and hMSCs after 3 weeks in basal culture. The accumulation of GAGs and the expression of chondrocyte marker genes were all significantly increased. In addition, hMSCs-seeded scaffold showed a significantly higher mechanical strength after 3 weeks in basal culture. The chondrogenic induction of TCP-COL-HA scaffolds in basal medium were almost similar to that in chondrogenic medium on hMSCs. The chondrogenesis-inducing capacity of TCP-COL-HA scaffold might help to improve cartilage tissue engineering with economic and safe benefits.
Collapse
Affiliation(s)
- Fangang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kutikov AB, Song J. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater 2013; 9:8354-64. [PMID: 23791675 PMCID: PMC3745304 DOI: 10.1016/j.actbio.2013.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023]
Abstract
Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as poly(lactic acid) (PLA) are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity and biological performance of the composite. To overcome this challenge, we combined a hydrophilic polyethylene glycol (PEG) block with poly(d,l-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25wt.% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain>200% vs. <40% for HA-PLA), superhydrophilic (∼0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenic gene expression upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics & Physical Rehabilitation, Department of Cell and Developmental Biology. University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, Department of Cell and Developmental Biology. University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| |
Collapse
|
47
|
Kim IL, Khetan S, Baker BM, Chen CS, Burdick JA. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 2013; 34:5571-80. [PMID: 23623322 PMCID: PMC3652578 DOI: 10.1016/j.biomaterials.2013.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/03/2013] [Indexed: 12/15/2022]
Abstract
Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies.
Collapse
Affiliation(s)
- Iris L. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Sudhir Khetan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Brendon M. Baker
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| |
Collapse
|
48
|
Mouthuy PA, El-Sherbini Y, Cui Z, Ye H. Layering PLGA-based electrospun membranes and cell sheets for engineering cartilage-bone transition. J Tissue Eng Regen Med 2013; 10:E263-74. [DOI: 10.1002/term.1765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 03/13/2013] [Accepted: 04/13/2013] [Indexed: 11/11/2022]
Affiliation(s)
- P.-A. Mouthuy
- Institute of Biomedical Engineering, Department of Engineering Science; University of Oxford; UK
| | - Y. El-Sherbini
- Institute of Biomedical Engineering, Department of Engineering Science; University of Oxford; UK
| | - Z. Cui
- Institute of Biomedical Engineering, Department of Engineering Science; University of Oxford; UK
| | - H. Ye
- Institute of Biomedical Engineering, Department of Engineering Science; University of Oxford; UK
| |
Collapse
|
49
|
Vadalà G, Russo F, Di Martino A, Denaro V. Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering. J Tissue Eng Regen Med 2013; 9:679-90. [PMID: 23512973 DOI: 10.1002/term.1719] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 12/21/2012] [Accepted: 01/05/2013] [Indexed: 12/21/2022]
Abstract
Low back pain is one of the major health problems in industrialized countries, as a leading source of disability in the working population. Intervertebral disc degeneration has been identified as its main cause, being a progressive process mainly characterized by alteration of extracellular matrix composition and water content. Many factors are involved in the degenerative cascade, such as anabolism/catabolism imbalance, reduction of nutrition supply and progressive cell loss. Currently available treatments are symptomatic, and surgical procedures consisting of disc removal are often necessary. Recent advances in our understanding of intervertebral disc biology led to an increased interest in the development of novel biological treatments aimed at disc regeneration. Growth factors, gene therapy, stem cell transplantation and biomaterials-based tissue engineering might support intervertebral disc regeneration by overcoming the limitation of the self-renewal mechanism. The aim of this paper is to overview the literature discussing the current status of our knowledge from the degenerative cascade of the intervertebral disc to the latest molecular, cell-based therapies and tissue-engineering strategies for disc regeneration.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| | - Alberto Di Martino
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| |
Collapse
|
50
|
Lü LX, Zhang XF, Wang YY, Ortiz L, Mao X, Jiang ZL, Xiao ZD, Huang NP. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS APPLIED MATERIALS & INTERFACES 2013; 5:319-30. [PMID: 23267692 DOI: 10.1021/am302146w] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Among a variety of polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a microbial polyester, with biodegradable, nonantigenic, and biocompatible properties, is attracting more and more attention in tissue engineering. Hydroxyapatite (HA), similar to the mineral component of natural bone, is known to be osteoconductive, nontoxic, and noninflammatory. In this study, aligned and random-oriented PHBV nanofibrous scaffolds loaded with HA nanoparticles were fabricated through electrospinning technique. Mesenchymal stem cells (MSCs) derived from rat bone marrow were used to investigate the effects of HA and orientation of fibers on cell proliferation and differentiation in vitro. Cell proliferation tested with CCK-8 assay indicated that the MSCs attached and proliferated more favorably on random-oriented PHBV nanofibrous meshes without HA. After one, two and four weeks of cell seeding, osteogenic markers including alkaline phosphate (ALP), osteocalcin (OCN), and mineralized matrix deposits were detected, respectively. The results indicated that the introduction of HA could induce MSCs to differentiate into osteoblasts. Moreover, 3D PHBV/HA scaffolds made from aligned and random-oriented nanofibers were implanted into critical-sized rabbit radius defects and exhibited significant effects on the repair of critical bone defects, implying their promising applications in bone tissue engineering.
Collapse
Affiliation(s)
- Lan-Xin Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | | | | | | | | | | | | | | |
Collapse
|