1
|
Spedicati M, Zoso A, Mortati L, Chiono V, Marcello E, Carmagnola I. Three-Dimensional Microfibrous Scaffold with Aligned Topography Produced via a Combination of Melt-Extrusion Additive Manufacturing and Porogen Leaching for In Vitro Skeletal Muscle Modeling. Bioengineering (Basel) 2024; 11:332. [PMID: 38671754 PMCID: PMC11047940 DOI: 10.3390/bioengineering11040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle tissue (SMT) has a highly hierarchical and anisotropic morphology, featuring aligned and parallel structures at multiple levels. Various factors, including trauma and disease conditions, can compromise the functionality of skeletal muscle. The in vitro modeling of SMT represents a useful tool for testing novel drugs and therapies. The successful replication of SMT native morphology demands scaffolds with an aligned anisotropic 3D architecture. In this work, a 3D PCL fibrous scaffold with aligned morphology was developed through the synergistic combination of Melt-Extrusion Additive Manufacturing (MEAM) and porogen leaching, utilizing PCL as the bulk material and PEG as the porogen. PCL/PEG blends with different polymer ratios (60/40, 50/50, 40/60) were produced and characterized through a DSC analysis. The MEAM process parameters and porogen leaching in bi-distilled water allowed for the development of a micrometric anisotropic fibrous structure with fiber diameters ranging from 10 to 100 µm, depending on PCL/PEG blend ratios. The fibrous scaffolds were coated with Gelatin type A to achieve a biomimetic coating for an in vitro cell culture and mechanically characterized via AFM. The 40/60 PCL/PEG scaffolds yielded the most homogeneous and smallest fibers and the greatest physiological stiffness. In vitro cell culture studies were performed by seeding C2C12 cells onto a selected scaffold, enabling their attachment, alignment, and myotube formation along the PCL fibers during a 14-day culture period. The resultant anisotropic scaffold morphology promoted SMT-like cell conformation, establishing a versatile platform for developing in vitro models of tissues with anisotropic morphology.
Collapse
Affiliation(s)
- Mattia Spedicati
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino, Italy;
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (A.Z.); (V.C.)
- POLITO BioMedLab, Politecnico di Torino, 10129 Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| |
Collapse
|
2
|
Allaf RM, Albarahmieh E, AlHamarneh BM. Solid-state compounding of immiscible PCL-PEO blend powders for molding processes. J Mech Behav Biomed Mater 2019; 97:198-211. [PMID: 31125892 DOI: 10.1016/j.jmbbm.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
Solid-state milling is a promising ecologically friendly method for fabricating polymeric blend and composite powder raw materials for several subsequent manufacturing processes. Biodegradable polymers, blends, and composites are expected to find extensive use by industry due to their environmental friendliness and acceptable mechanical and thermal properties for several applications. Poly-ε-caprolactone (PCL), poly-ethylene-oxide (PEO), and their blends have attracted so much attention to replace commodity polymers in future applications. Therefore, in the current research, bulk compounding of PCL-PEO blends with various compositions using solid-state cryomilling was investigated. Structural, mechanical, thermal, and hydrophilicity properties were examined on samples obtained by compression molding to explore the capabilities of the milling process for various applications. Morphology of the blends was explored by scanning electron microscopy (SEM), which showed a clear phase separation in blends after heating. Dispersed as well as co-continuous morphologies were achieved by varying composition. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) of the blends indicated insignificant amorphization by milling. Tensile strength, modulus, and percentage elongation at break of the blends demonstrated significant variations due to processing parameters.
Collapse
Affiliation(s)
- Rula M Allaf
- Industrial Engineering Department, School of Applied Technical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| | - Esra'a Albarahmieh
- Pharmaceutical-Chemical Engineering Department, School of Applied Medical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| | - Baider M AlHamarneh
- Mechanical and Maintenance Engineering Department, School of Applied Technical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| |
Collapse
|
4
|
Al Jahwari F, Anwer AAW, Naguib HE. Fabrication and microstructural characterization of functionally graded porous acrylonitrile butadiene styrene and the effect of cellular morphology on creep behavior. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farooq Al Jahwari
- Department of Mechanical and Industrial Engineering; Department of Materials Science and Engineering; Institute of Biomaterials and Biomedical Engineering, University of Toronto; 5 King's College Road Toronto Ontario Canada M5S 3G8
| | - Ahmed A. W. Anwer
- Department of Mechanical and Industrial Engineering; Department of Materials Science and Engineering; Institute of Biomaterials and Biomedical Engineering, University of Toronto; 5 King's College Road Toronto Ontario Canada M5S 3G8
| | - Hani E. Naguib
- Department of Mechanical and Industrial Engineering; Department of Materials Science and Engineering; Institute of Biomaterials and Biomedical Engineering, University of Toronto; 5 King's College Road Toronto Ontario Canada M5S 3G8
| |
Collapse
|
5
|
Baklavaridis A, Zuburtikudis I, Panayiotou C. Porous composite structures derived from multiphase polymer blends. POLYM ENG SCI 2014. [DOI: 10.1002/pen.24025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Apostolos Baklavaridis
- Department of Mechanical and Industrial Design Engineering; TEI of Western Macedonia; 50100 Kozani Greece
- Department of Chemical Engineering; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| | - Ioannis Zuburtikudis
- Department of Mechanical and Industrial Design Engineering; TEI of Western Macedonia; 50100 Kozani Greece
| | - Costas Panayiotou
- Department of Chemical Engineering; Aristotle University of Thessaloniki; 54124 Thessaloniki Greece
| |
Collapse
|
6
|
Zhang W, Li M, Wang C, Zhou JG, Yao D. Micropatterning of Porous Structures from Co/Continuous Polymer Blends. ADVANCES IN POLYMER TECHNOLOGY 2013. [DOI: 10.1002/adv.21260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Zhang W, Yao D, Zhang Q, Zhou JG, Lelkes PI. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading. Biofabrication 2010; 2:035006. [DOI: 10.1088/1758-5082/2/3/035006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|