1
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
2
|
O'Neill KM, Anderson ED, Mukherjee S, Gandu S, McEwan SA, Omelchenko A, Rodriguez AR, Losert W, Meaney DF, Babadi B, Firestein BL. Time-dependent homeostatic mechanisms underlie brain-derived neurotrophic factor action on neural circuitry. Commun Biol 2023; 6:1278. [PMID: 38110605 PMCID: PMC10728104 DOI: 10.1038/s42003-023-05638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.
Collapse
Affiliation(s)
- Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers University, Piscataway, NJ, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Sara A McEwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Adegoke MA, Teter O, Meaney DF. Flexibility of in vitro cortical circuits influences resilience from microtrauma. Front Cell Neurosci 2022; 16:991740. [PMID: 36589287 PMCID: PMC9803265 DOI: 10.3389/fncel.2022.991740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Small clusters comprising hundreds to thousands of neurons are an important level of brain architecture that correlates single neuronal properties to fulfill brain function, but the specific mechanisms through which this scaling occurs are not well understood. In this study, we developed an in vitro experimental platform of small neuronal circuits (islands) to probe the importance of structural properties for their development, physiology, and response to microtrauma. Methods Primary cortical neurons were plated on a substrate patterned to promote attachment in clusters of hundreds of cells (islands), transduced with GCaMP6f, allowed to mature until 10-13 days in vitro (DIV), and monitored with Ca2+ as a non-invasive proxy for electrical activity. We adjusted two structural factors-island size and cellular density-to evaluate their role in guiding spontaneous activity and network formation in neuronal islands. Results We found cellular density, but not island size, regulates of circuit activity and network function in this system. Low cellular density islands can achieve many states of activity, while high cellular density biases islands towards a limited regime characterized by low rates of activity and high synchronization, a property we summarized as "flexibility." The injury severity required for an island to lose activity in 50% of its population was significantly higher in low-density, high flexibility islands. Conclusion Together, these studies demonstrate flexible living cortical circuits are more resilient to microtrauma, providing the first evidence that initial circuit state may be a key factor to consider when evaluating the consequences of trauma to the cortex.
Collapse
Affiliation(s)
- Modupe A. Adegoke
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia Teter
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: David F. Meaney,
| |
Collapse
|
4
|
Rodriguez AR, Anderson ED, O'Neill KM, McEwan PP, Vigilante NF, Kwon M, Akum BF, Stawicki TM, Meaney DF, Firestein BL. Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Netw Neurosci 2021; 5:166-197. [PMID: 33688611 PMCID: PMC7935033 DOI: 10.1162/netn_a_00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/04/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.
Collapse
Affiliation(s)
- Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Przemyslaw P McEwan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara M Stawicki
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
5
|
Rodríguez AR, O'Neill KM, Swiatkowski P, Patel MV, Firestein BL. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms. J Neural Eng 2019; 15:016020. [PMID: 29091046 DOI: 10.1088/1741-2552/aa976a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. APPROACH We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ; PSD-95 non-binding) expression cellularly and network-wide, respectively. MAIN RESULTS Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. SIGNIFICANCE Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.
Collapse
Affiliation(s)
- Ana R Rodríguez
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, United States of America. Graduate Program in Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | | | | | | | | |
Collapse
|
6
|
Patel MV, Sewell E, Dickson S, Kim H, Meaney DF, Firestein BL. A Role for Postsynaptic Density 95 and Its Binding Partners in Models of Traumatic Brain Injury. J Neurotrauma 2019; 36:2129-2138. [DOI: 10.1089/neu.2018.6291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mihir V. Patel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
- Graduate Program in Neurosciences, Rutgers University, Piscataway, New Jersey
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyuck Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
7
|
Zhang LN, Wang Q, Xian XH, Qi J, Liu LZ, Li WB. Astrocytes enhance the tolerance of rat cortical neurons to glutamate excitotoxicity. Mol Med Rep 2018; 19:1521-1528. [PMID: 30592287 PMCID: PMC6390011 DOI: 10.3892/mmr.2018.9799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders, including stroke, trauma and neurodegenerative diseases. Astrocytes are the main cells for the removal of glutamate in the synaptic cleft and may affect the tolerance of neurons to the glutamate excitotoxicity. Therefore, the present study aimed to investigate the tolerance of rat cortical neurons to glutamate excitotoxicity in the presence and absence of astrocytes. Rat cortical neurons in the presence or absence of astrocytes were exposed to different concentrations of glutamate (10‑2,000 µM) and 10 µM glycine for different incubation periods. After 24 h, the Cell Counting kit‑8 (CCK‑8) assay was used to measure the cytotoxicity to neurons in the presence or absence of astrocytes. According to the results, in the absence of astrocytes, glutamate induced a concentration‑dependent decrease of neuronal survival rate compared with the control rat cortical neurons, and the neurotoxic half‑maximal inhibitory concentration (IC50) at 15, 30 and 60 min was 364.5, 258.5 and 138.3 µM, respectively. Furthermore, in the presence of astrocytes, glutamate induced a concentration‑dependent decrease of neuronal survival rate compared with the control rat cortical neurons, and the neurotoxic IC50 at 15, 30 and 60 min was 1,935, 932.8 and 789.3 µM, respectively. However, astrocytic toxicity was not observed when the rat cortical astrocytes alone were exposed to different concentrations of glutamate (500, 1,000 and 2,000 µM) for 6, 12 and 24 h. In conclusion, the glutamate‑induced neurotoxic IC50 values at 15, 30 and 60 min were respectively higher in the presence of astrocytes as compared with those in the absence of astrocytes, suggesting that astrocytes can protect against rat cortical neuronal acute damage induced by glutamate.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Qi Wang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jie Qi
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Li-Zhe Liu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
8
|
Svane KC, Asis EK, Omelchenko A, Kunnath AJ, Brzustowicz LM, Silverstein SM, Firestein BL. d-Serine administration affects nitric oxide synthase 1 adaptor protein and DISC1 expression in sex-specific manner. Mol Cell Neurosci 2018; 89:20-32. [PMID: 29601869 DOI: 10.1016/j.mcn.2018.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 01/19/2023] Open
Abstract
Antipsychotic medications are inefficient at treating symptoms of schizophrenia (SCZ), and N-methyl d-aspartate receptor (NMDAR) agonists are potential therapeutic alternatives. As such, these agonists may act on different pathways and proteins altered in the brains of patients with SCZ than do antipsychotic medications. Here, we investigate the effects of administration of the antipsychotic haloperidol and NMDAR agonist d-serine on function and expression of three proteins that play significant roles in SCZ: nitric oxide synthase 1 adaptor protein (NOS1AP), dopamine D2 (D2) receptor, and disrupted in schizophrenia 1 (DISC1). We administered haloperidol or d-serine to male and female Sprague Dawley rats via intraperitoneal injection for 12 days and subsequently examined cortical expression of NOS1AP, D2 receptor, and DISC1. We found sex-specific effects of haloperidol and d-serine treatment on the expression of these proteins. Haloperidol significantly reduced expression of D2 receptor in male, but not female, rats. Conversely, d-serine reduced expression of NOS1AP in male rats and did not affect D2 receptor expression. d-serine treatment also reduced expression of DISC1 in male rats and increased DISC1 expression in female rats. As NOS1AP is overexpressed in the cortex of patients with SCZ and negatively regulates NMDAR signaling, we subsequently examined whether treatment with antipsychotics or NMDAR agonists can reverse the detrimental effects of NOS1AP overexpression in vitro as previously reported by our group. NOS1AP overexpression promotes reduced dendrite branching in vitro, and as such, we treated cortical neurons overexpressing NOS1AP with different antipsychotics (haloperidol, clozapine, fluphenazine) or d-serine for 24 h and determined the effects of these drugs on NOS1AP expression and dendrite branching. While antipsychotics did not affect NOS1AP protein expression or dendrite branching in vitro, d-serine reduced NOS1AP expression and rescued NOS1AP-mediated reductions in dendrite branching. Taken together, our data suggest that d-serine influences the function and expression of NOS1AP, D2 receptor, and DISC1 in a sex-specific manner and reverses the effects of NOS1AP overexpression on dendrite morphology.
Collapse
Affiliation(s)
- Kirsten C Svane
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA; Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ericka-Kate Asis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA; Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ansley J Kunnath
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Linda M Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Steven M Silverstein
- Division of Schizophrenia Research, Rutgers University Behavioral Health Care, 671 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Mendis GDC, Morrisroe E, Petrou S, Halgamuge SK. Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation. J Neural Eng 2016; 13:026009. [PMID: 26861133 DOI: 10.1088/1741-2560/13/2/026009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Multielectrode arrays are an informative extracellular recording technology that enables the analysis of cultured neuronal networks and network bursts (NBs) are a dominant feature observed in these recordings. This paper focuses on the validation of NB detection methods on different network activity patterns and developing a detection method that performs robustly across a wide variety of activity patterns. APPROACH A firing rate based approach was used to generate artificial spike timestamps where NBs were introduced as episodes where the probability of spiking increases. Variations in firing and bursting characteristics were also included. In addition, an improved methodology of detecting NBs is proposed, based on time-binned average firing rates and time overlaps of single channel bursts. The robustness of the proposed method was compared against three existing algorithms using simulated, publicly available and newly acquired data. MAIN RESULTS A range of activity patterns were generated by changing simulation variables that correspond to NB duration (40-2200 ms), intervals (0.3-16 s), firing rates (0.1-1 spikes s(-1)), local burst percentage (0%-90%), number of channels in local bursts (20-40) as well as the number of tonic and frequently-bursting channels. By extracting simulation parameters directly from real data, we generated synthetic data that closely resemble activity of mouse and rat cortical cultures at native and chemically perturbed states. In 50 simulated data sets with randomly selected parameter values, the improved NB detection method performed better (ascertained by the f-measure) than three existing methods (p < 0.005). The improved method was also able to detect clustered, long-tailed and short-frequent NBs on real data. SIGNIFICANCE This work presents an objective method of assessing the applicability of NB detection methods for different neuronal activity patterns. Furthermore, it proposes an improved NB detection method that can be used robustly across a range of data types.
Collapse
Affiliation(s)
- G D C Mendis
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
10
|
Campbell J, Singh D, Hollett G, Dravid SM, Sailor MJ, Arikkath J. Spatially selective photoconductive stimulation of live neurons. Front Cell Neurosci 2014; 8:142. [PMID: 24904287 PMCID: PMC4033187 DOI: 10.3389/fncel.2014.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022] Open
Abstract
Synaptic activity is intimately linked to neuronal structure and function. Stimulation of live cultured primary neurons, coupled with fluorescent indicator imaging, is a powerful technique to assess the impact of synaptic activity on neuronal protein trafficking and function. Current technology for neuronal stimulation in culture include chemical techniques or microelectrode or optogenetic based techniques. While technically powerful, chemical stimulation has limited spatial resolution and microelectrode and optogenetic techniques require specialized equipment and expertise. We report an optimized and improved technique for laser based photoconductive stimulation of live neurons using an inverted confocal microscope that overcomes these limitations. The advantages of this approach include its non-invasive nature and adaptability to temporal and spatial manipulation. We demonstrate that the technique can be manipulated to achieve spatially selective stimulation of live neurons. Coupled with live imaging of fluorescent indicators, this simple and efficient technique should allow for significant advances in neuronal cell biology.
Collapse
Affiliation(s)
- Jacob Campbell
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| | - Geoffrey Hollett
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | | | - Michael J Sailor
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA ; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
11
|
Kutzing MK, Luo V, Firestein BL. Protection from glutamate-induced excitotoxicity by memantine. Ann Biomed Eng 2011; 40:1170-81. [PMID: 22203191 DOI: 10.1007/s10439-011-0494-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/17/2011] [Indexed: 11/25/2022]
Abstract
This study investigates whether the uncompetitive N-methyl-D-aspartic acid receptor antagonist, memantine, is able to protect dissociated cortical neurons from glutamate-induced excitotoxicity (GIE). Treatment with glutamate resulted in a significant loss of synchronization of neuronal activity as well as a significant increase in the duration of synchronized bursting events (SBEs). By administering memantine at the same time as glutamate, we were able to completely prevent these changes to the neuronal activity. Pretreatment with memantine was somewhat effective in preventing changes to the culture synchronization but was unable to fully protect the synchronization of electrical activity between neurons that showed high levels of synchronization prior to injury. Additionally, memantine pretreatment was unable to prevent the increase in the duration of SBEs caused by GIE. Thus, the timing of memantine treatment is important for conferring neuroprotection against glutamate-induced neurotoxicity. Finally, we found that GIE leads to a significant increase in the burst duration. Our data suggest that this may be due to an alteration in the inhibitory function of the neurons.
Collapse
Affiliation(s)
- Melinda K Kutzing
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA
| | | | | |
Collapse
|