1
|
Griesbach JK, Schulte FA, Schädli GN, Rubert M, Müller R. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography. Acta Biomater 2024; 179:149-163. [PMID: 38492908 DOI: 10.1016/j.actbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Bone can adapt its microstructure to mechanical loads through mechanoregulation of the (re)modeling process. This process has been investigated in vivo using time-lapsed micro-computed tomography (micro-CT) and micro-finite element (FE) analysis using surface-based methods, which are highly influenced by surface curvature. Consequently, when trying to investigate mechanoregulation in tissue engineered bone constructs, their concave surfaces make the detection of mechanoregulation impossible when using surface-based methods. In this study, we aimed at developing and applying a volumetric method to non-invasively quantify mechanoregulation of bone formation in tissue engineered bone constructs using micro-CT images and FE analysis. We first investigated hydroxyapatite scaffolds seeded with human mesenchymal stem cells that were incubated over 8 weeks with one mechanically loaded and one control group. Higher mechanoregulation of bone formation was measured in loaded samples with an area under the curve for the receiver operating curve (AUCformation) of 0.633-0.637 compared to non-loaded controls (AUCformation: 0.592-0.604) during culture in osteogenic medium (p < 0.05). Furthermore, we applied the method to an in vivo mouse study investigating the effect of loading frequencies on bone adaptation. The volumetric method detected differences in mechanoregulation of bone formation between loading conditions (p < 0.05). Mechanoregulation in bone formation was more pronounced (AUCformation: 0.609-0.642) compared to the surface-based method (AUCformation: 0.565-0.569, p < 0.05). Our results show that mechanoregulation of formation in bone tissue engineered constructs takes place and its extent can be quantified with a volumetric mechanoregulation method using time-lapsed micro-CT and FE analysis. STATEMENT OF SIGNIFICANCE: Many efforts have been directed towards optimizing bone scaffolds for tissue growth. However, the impact of the scaffolds mechanical environment on bone growth is still poorly understood, requiring accurate assessment of its mechanoregulation. Existing surface-based methods were unable to detect mechanoregulation in tissue engineered constructs, due to predominantly concave surfaces in scaffolds. We present a volumetric approach to enable the precise and non-invasive quantification and analysis of mechanoregulation in bone tissue engineered constructs by leveraging time-lapsed micro-CT imaging, image registration, and finite element analysis. The implications of this research extend to diverse experimental setups, encompassing culture conditions, and material optimization, and investigations into bone diseases, enabling a significant stride towards comprehensive advancements in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Julia K Griesbach
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Friederike A Schulte
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Gian Nutal Schädli
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland.
| |
Collapse
|
2
|
Combination of optimized tissue engineering bone implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits. Cell Tissue Res 2021; 385:639-658. [PMID: 33966092 DOI: 10.1007/s00441-021-03458-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, effects of combining optimized tissue engineering bone (TEB) implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits were investigated. Physiological characteristics of bone marrow mesenchymal stem cells (BMMSCs), compact bone cells (CBCs), and bone marrow and compact bone coculture cells (BMMSC-CBCs) were compared to select the optimal seed cells for optimized TEB construction. Rabbits with segmental bone defects were treated in different ways (cancellous bone scaffold for group A, cancellous bone scaffold and mechanical loading for group B, optimized TEB for group C, optimized TEB and mechanical loading for group D, n = 4), and the bone repair were compared. BMMSC-CBCs showed better proliferation capacity than CBCs (p < 0.01) and stronger osteogenic differentiation ability than BMMSCs (p < 0.05). Heel-strike like mechanical loading improved proliferation and osteogenic differentiation ability and expression levels of TGFβ1 as well as BMP2 of seed cells in vitro (p < 0.05). At week 12 post-operation, group D showed the best bone repair, followed by groups B and C, while group A finished last (p < 0.05). During week 4 to 12 post-operation, group D peaked in terms of expression levels of TGFβ1, BMP2, and OCN, followed by groups B and C, while group A finished last (p < 0.05). Thus, BMMSC-CBCs showed good proliferation and osteogenic differentiation ability, and they were thought to be better as seed cells than BMMSCs and CBCs. The optimized TEB implantation combined with heel-strike like mechanical loading had a synergistic effect on bone defect healing, and enhanced expression of TGFβ1 and BMP2 played an important role in this process.
Collapse
|
3
|
Wang S, Li S, Hu M, Huo B. Calcium response in bone cells at different osteogenic stages under unidirectional or oscillatory flow. BIOMICROFLUIDICS 2019; 13:064117. [PMID: 31768203 PMCID: PMC6872469 DOI: 10.1063/1.5128696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
It was found that preosteoblast MC3T3-E1 cells were less responsive in calcium signaling than mature osteocyte MLO-Y4 cells when a steady fluid flow was exerted on a micropatterned cell network. However, the effect of fluid flow on the calcium response in preosteocyte MLO-A5 was seldom investigated. In the present study, MLO-A5 as well as MC3T3-E1 and MLO-Y4 cells were cultured on a regular substrate with high or low density under unidirectional or oscillatory fluid flow. The results showed that calcium oscillation in the cells during late osteogenesis was significantly stronger than during early osteogenesis regardless of the fluid flow type or the presence of a physical cell-cell connection. Calcium oscillation produced by the oscillatory flow in the three types of cells was stronger than that produced by the unidirectional flow, but MC3T3-E1 and MLO-A5 cells exhibited limited potential for calcium oscillation compared with MLO-Y4 cells. After suramin was used to block the binding of extracellular adenosine triphosphate (ATP) to the membrane P2 receptor, the calcium oscillation in the three types of bone cells with or without physical connections was significantly suppressed as a single responsive peak under unidirectional flow. For the ATP-blocking group of low-density cells under oscillatory flow, the number of oscillation peaks in three types of cells was still more than two. It indicates that besides the ATP pathway, other mechanosensitive calcium pathways may exist under oscillatory flow. The present study provided further evidence for the osteogenic stage-dependent calcium response of bone cells under unidirectional or oscillatory fluid flow.
Collapse
Affiliation(s)
- Shurong Wang
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Shuna Li
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Man Hu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- Author to whom correspondence should be addressed:. Tel.: 8610-68915760
| |
Collapse
|
4
|
Katarivas Levy G, Birch MA, Brooks RA, Neelakantan S, Markaki AE. Stimulation of Human Osteoblast Differentiation in Magneto-Mechanically Actuated Ferromagnetic Fiber Networks. J Clin Med 2019; 8:E1522. [PMID: 31546701 PMCID: PMC6833056 DOI: 10.3390/jcm8101522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
There is currently an interest in "active" implantable biomedical devices that include mechanical stimulation as an integral part of their design. This paper reports the experimental use of a porous scaffold made of interconnected networks of slender ferromagnetic fibers that can be actuated in vivo by an external magnetic field applying strains to in-growing cells. Such scaffolds have been previously characterized in terms of their mechanical and cellular responses. In this study, it is shown that the shape changes induced in the scaffolds can be used to promote osteogenesis in vitro. In particular, immunofluorescence, gene and protein analyses reveal that the actuated networks exhibit higher mineralization and extracellular matrix production, and express higher levels of osteocalcin, alkaline phosphatase, collagen type 1α1, runt-related transcription factor 2 and bone morphogenetic protein 2 than the static controls at the 3-week time point. The results suggest that the cells filling the inter-fiber spaces are able to sense and react to the magneto-mechanically induced strains facilitating osteogenic differentiation and maturation. This work provides evidence in support of using this approach to stimulate bone ingrowth around a device implanted in bone and can pave the way for further applications in bone tissue engineering.
Collapse
Affiliation(s)
- Galit Katarivas Levy
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Mark A Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Roger A Brooks
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Suresh Neelakantan
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
5
|
Lin HT, Chen SK, Guo JW, Su IC, Huang CJ, Chien CC, Chang CJ. Dynamic expression of SMAD3 is critical in osteoblast differentiation of PDMCs. Int J Mol Med 2018; 43:1085-1093. [PMID: 30483761 DOI: 10.3892/ijmm.2018.4001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/19/2018] [Indexed: 11/06/2022] Open
Abstract
Human pluripotent stem cells have the potential assist in the identification of genes involved in mammalian development. The human placenta is considered a repository of stem cells, termed placenta‑derived multipotent cells (PDMCs), which are able to differentiate into cells with an osteoblastic phenotype. This plasticity of PDMCs maybe applied clinically to the understanding of osteogenesis and osteoporosis. In the presentstudy, osteoblasts were generated by culturing PDMCs in osteogenic medium. Reverse transcription quantitative polymerase chain reactionand the degree of osteoblast calcification were used to evaluate the efficacy of osteogenesis. The results suggestedthat the expression of mothers against decapentaplegic homolog 3 (SMAD3) increased in the initial stages of osteogenic differentiation but decreased in the later stages. However, osteogenesis was inhibitedwhen the PDMCs overexpressed SMAD3 throughout the differentiation period. In addition, the rate of osteogenic differentiation was decreased when SMAD3 signaling was impaired. In conclusion, SMAD3 serves an important role in osteoblast differentiation and bone formation in a time‑dependent manner. The data from the present study indicate that arapid increase in SMAD3 expression is crucial for osteogenesis and suggest a role for PDMCs in the treatment of patients with osteoporosis.
Collapse
Affiliation(s)
- Hsi-Ting Lin
- Department of Orthopedics, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Shao-Kuan Chen
- Department of Urology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Jiun-Wen Guo
- Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - I-Chang Su
- Department of Neurosurgery, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Chi-Jung Huang
- Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Chih-Cheng Chien
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Chih-Ju Chang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| |
Collapse
|
6
|
Stavenschi E, Corrigan MA, Johnson GP, Riffault M, Hoey DA. Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stem Cell Res Ther 2018; 9:276. [PMID: 30359324 PMCID: PMC6203194 DOI: 10.1186/s13287-018-1025-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/27/2018] [Accepted: 09/30/2018] [Indexed: 01/12/2023] Open
Abstract
Background Physical loading is necessary to maintain bone tissue integrity. Loading-induced fluid shear is recognised as one of the most potent bone micromechanical cues and has been shown to direct stem cell osteogenesis. However, the effect of pressure transients, which drive fluid flow, on human bone marrow stem cell (hBMSC) osteogenesis is undetermined. Therefore, the objective of the study is to employ a systematic analysis of cyclic hydrostatic pressure (CHP) parameters predicted to occur in vivo on early hBMSC osteogenic responses and late-stage osteogenic lineage commitment. Methods hBMSC were exposed to CHP of 10 kPa, 100 kPa and 300 kPa magnitudes at frequencies of 0.5 Hz, 1 Hz and 2 Hz for 1 h, 2 h and 4 h of stimulation, and the effect on early osteogenic gene expression of COX2, RUNX2 and OPN was determined. Moreover, to decipher whether CHP can induce stem cell lineage commitment, hBMSCs were stimulated for 4 days for 2 h/day using 10 kPa, 100 kPa and 300 kPa pressures at 2 Hz frequency and cultured statically for an additional 1–2 weeks. Pressure-induced osteogenesis was quantified based on ATP release, collagen synthesis and mineral deposition. Results CHP elicited a positive, but variable, early osteogenic response in hBMSCs in a magnitude- and frequency-dependent manner, that is gene specific. COX2 expression elicited magnitude-dependent effects which were not present for RUNX2 or OPN mRNA expression. However, the most robust pro-osteogenic response was found at the highest magnitude (300 kPa) and frequency regimes (2 Hz). Interestingly, long-term mechanical stimulation utilising 2 Hz frequency elicited a magnitude-dependent release of ATP; however, all magnitudes promoted similar levels of collagen synthesis and significant mineral deposition, demonstrating that lineage commitment is magnitude independent. This therefore demonstrates that physiological levels of pressures, as low as 10 kPa, within the bone can drive hBMSC osteogenic lineage commitment. Conclusion Overall, these findings demonstrate an important role for cyclic hydrostatic pressure in hBMSCs and bone mechanobiology, which should be considered when studying pressure-driven fluid shear effects in hBMSCs mechanobiology. Moreover, these findings may have clinical implication in terms of bioreactor-based bone tissue engineering strategies. Electronic supplementary material The online version of this article (10.1186/s13287-018-1025-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Stavenschi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Michele A Corrigan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Gillian P Johnson
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| | - Mathieu Riffault
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin 2, Ireland
| | - David A Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland. .,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin 2, Ireland.
| |
Collapse
|
7
|
Chung R, Kalyon DM, Yu X, Valdevit A. Segmental bone replacement via patient-specific, three-dimensional printed bioresorbable graft substitutes and their use as templates for the culture of mesenchymal stem cells under mechanical stimulation at various frequencies. Biotechnol Bioeng 2018; 115:2365-2376. [PMID: 29940090 DOI: 10.1002/bit.26780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
The treatment of large segmental bone defects remains a challenge as infection, delayed union, and nonunion are common postoperative complications. A three-dimensional printed bioresorbable and physiologically load-sustaining graft substitute was developed to mimic native bone tissue for segmental bone repair. Fabricated from polylactic acid, this graft substitute is novel as it is readily customizable to accommodate the particular size and location of the segmental bone of the patient to be replaced. Inspired by the structure of the native bone tissue, the graft substitute exhibits a gradient in porosity and pore size in the radial direction and exhibit mechanical properties similar to those of the native bone tissue. The graft substitute can serve as a template for tissue constructs via seeding with stem cells. The biocompatibility of such templates was tested under in vitro conditions using a dynamic culture of human mesenchymal stem cells. The effects of the mechanical loading of cell-seeded templates under in vitro conditions were assessed via subjecting the tissue constructs to 28 days of daily mechanical stimulation. The frequency of loading was found to have a significant effect on the rate of mineralization, as the alkaline phosphatase activity and calcium deposition were determined to be particularly high at the typical walking frequency of 2 Hz, suggesting that mechanical stimulation plays a significant role in facilitating the healing process of bone defects. Utilization of such patient-specific and biocompatible graft substitutes, coupled with patient's bone marrow cells seeded and exposed to mechanical stimulation of 2 Hz have the potential of reducing significant volumes of cadaveric tissue required, improving long-term graft stability and incorporation, and alleviating financial burdens associated with delayed or failed fusions of long bone defects.
Collapse
Affiliation(s)
- Rebecca Chung
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Dilhan M Kalyon
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.,Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey
| | - Xiaojun Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Antonio Valdevit
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
8
|
Stavenschi E, Labour MN, Hoey DA. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. J Biomech 2017; 55:99-106. [PMID: 28256244 DOI: 10.1016/j.jbiomech.2017.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 02/11/2017] [Indexed: 01/12/2023]
Abstract
A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1Pa, 2Pa and 5Pa magnitudes at frequencies of 0.5Hz, 1Hz and 2Hz for 1h, 2h and 4h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2Pa shear magnitude and 2Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis.
Collapse
Affiliation(s)
- Elena Stavenschi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Marie-Noelle Labour
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - David A Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland.
| |
Collapse
|
9
|
Wang D, Wang H, Gao F, Wang K, Dong F. ClC-3 Promotes Osteogenic Differentiation in MC3T3-E1 Cell After Dynamic Compression. J Cell Biochem 2016; 118:1606-1613. [PMID: 27922190 DOI: 10.1002/jcb.25823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/02/2016] [Indexed: 11/11/2022]
Abstract
ClC-3 chloride channel has been proved to have a relationship with the expression of osteogenic markers during osteogenesis, persistent static compression can upregulate the expression of ClC-3 and regulate osteodifferentiation in osteoblasts. However, there was no study about the relationship between the expression of ClC-3 and osteodifferentiation after dynamic compression. In this study, we applied dynamic compression on MC3T3-E1 cells to detect the expression of ClC-3, runt-related transcription factor 2 (Runx2), bone morphogenic protein-2 (BMP-2), osteopontin (OPN), nuclear-associated antigen Ki67 (Ki67), and proliferating cell nuclear antigen (PCNA) in biopress system, then we investigated the expression of these genes after dynamic compression with Chlorotoxin (specific ClC-3 chloride channel inhibitor) added. Under transmission electron microscopy, there were more cell surface protrusions, rough surfaced endoplasmic reticulum, mitochondria, Golgi apparatus, abundant glycogen, and lysosomes scattered in the cytoplasm in MC3T3-E1 cells after dynamic compression. The nucleolus was more obvious. We found that ClC-3 was significantly up-regulated after dynamic compression. The compressive force also up-regulated Runx2, BMP-2, and OPN after dynamic compression for 2, 4 and 8 h. The proliferation gene Ki67 and PCNA did not show significantly change after dynamic compression for 8 h. Chlorotoxin did not change the expression of ClC-3 but reduced the expression of Runx2, BMP-2, and OPN after dynamic compression compared with the group without Cltx added. The data from the current study suggested that ClC-3 may promotes osteogenic differentiation in MC3T3-E1 cell after dynamic compression. J. Cell. Biochem. 118: 1606-1613, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Stomatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Hao Wang
- Department of Stomatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Feng Gao
- Department of Pathology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Kun Wang
- Department of Stomatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China.,Hebei Key Laboratory of Oral Medicine, Shijiazhuang 050017, Hebei, China
| |
Collapse
|
10
|
Ravichandran A, Lim J, Chong MSK, Wen F, Liu Y, Pillay YT, Chan JKY, Teoh SH. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. J Biomed Mater Res B Appl Biomater 2016; 105:2366-2375. [PMID: 27527120 DOI: 10.1002/jbm.b.33772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
Application of dynamic mechanical loads on bone and bone explants has been reported to enhance osteogenesis and mineralization. To date, published studies have incorporated a range of cyclic strains on 3D scaffolds and platforms to demonstrate the effect of mechanical loading on osteogenesis. However, most of the loading parameters used in these studies do not emulate the in vivo loading conditions. In addition, the scaffolds/platforms are not representative of the native osteoinductive environment of bone tissue and hence may not be entirely accurate to study the in vivo mechanical loading. We hypothesized that biomimicry of physiological loading will potentiate accelerated osteogenesis in bone grafts. In this study, we present a compression bioreactor system that applies cyclic compression to cellular grafts in a controlled manner. Polycaprolactone-β Tricalcium Phosphate (PCL-TCP) scaffolds seeded with Mesenchymal Stem Cells (MSC) were cyclically compressed in bioreactor for a period of 4 weeks at 1 Hz and physiological strain value of 0.22% for 4 h per day. Gene expression studies revealed increased expressions of osteogenesis-related genes (Osteonectin and COL1A1) on day 7 of cyclic loading group relative to its static controls. Cyclic compression resulted in a 3.76-fold increase in the activity of Alkaline Phosphatase (ALP) on day 14 when compared to its static group (p < 0.001). In addition, calcium deposition of cyclic loading group was found to attain saturation on day 14 (1.96 fold higher than its static scaffolds). The results suggested that cyclic, physiological compression of stem cell-seeded scaffolds generated highly mineralized bone grafts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2366-2375, 2017.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jing Lim
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Mark Seow Khoon Chong
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Feng Wen
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yuchun Liu
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, Singapore 168938, Singapore
| | - Yaesshna T Pillay
- Department of Medicine and Medical Science, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jerry K Y Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Swee-Hin Teoh
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|