1
|
Gray AJ, Krupenevich RL, Batsis JA, Sawicki GS, Franz JR. Reduced Achilles tendon stiffness in aging associates with higher metabolic cost of walking. J Appl Physiol (1985) 2024; 137:1541-1548. [PMID: 39508895 PMCID: PMC11687843 DOI: 10.1152/japplphysiol.00377.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024] Open
Abstract
The mechanisms responsible for increased metabolic cost of walking in older adults are poorly understood. We recently proposed a theoretical premise by which age-related reductions in Achilles tendon stiffness (kAT) can disrupt the neuromechanics of calf muscle force production and contribute to faster rates of oxygen consumption during walking. The purpose of this study was to objectively evaluate this premise. We quantified kAT at a range of matched relative activations prescribed using electromyographic biofeedback and walking metabolic cost and ankle joint biomechanics in a group of 15 younger (age: 23 ± 4 yr) and 15 older (age: 72 ± 5 yr) adults. Older adults averaged 44% lower kAT than younger adults at matched triceps surae activations during isokinetic dorsiflexion tasks on a dynamometer (P = 0.046). Older adults also walked with a 17% higher net metabolic power (P = 0.017) but indistinguishable peak Achilles tendon forces than younger adults. Thus, data implicate altered tendon length-tension relations with age more than differences in the operating region of those length-tension relations between younger and older adults. In addition, we discovered empirical evidence that lesser kAT-likely due to the shorter muscle lengths and thus higher relative activations it imposes-was positively correlated with higher net metabolic power during walking (r = -0.365, P = 0.048). These results pave the way for interventions focused on restoring ankle muscle-tendon unit structural stiffness to improve walking energetics in aging.NEW & NOTEWORTHY This study provides the first empirical evidence to our knowledge that age-related decreases in kAT exact a potentially significant metabolic penalty during walking. These results pave the way for interventions focused on restoring ankle muscle-tendon unit structural stiffness to improve walking energetics in aging.
Collapse
Affiliation(s)
- Aubrey J Gray
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Rebecca L Krupenevich
- Division of Behavioral and Social Research, National Institute on Aging, Bethesda, Maryland, United States
| | - John A Batsis
- Division of Geriatric Medicine, Center for Aging and Health, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| |
Collapse
|
2
|
Piazza SJ. Beyond Inverse Dynamics: Methods for Assessment of Individual Muscle Function during Gait. Bioengineering (Basel) 2024; 11:896. [PMID: 39329638 PMCID: PMC11429282 DOI: 10.3390/bioengineering11090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional motion analysis performed in the modern gait analysis laboratory provides a wealth of information about the kinematics and kinetics of human locomotion, but standard gait analysis is largely restricted to joint-level measures. Three-dimensional joint rotations, joint moments, and joint powers tell us a great deal about gait mechanics, but it is often of interest to know about the roles that muscles play. This narrative review surveys work that has been done, largely over the past four decades, to augment standard gait analysis with muscle-level assessments of function. Often, these assessments have incorporated additional technology such as ultrasound imaging, or complex modeling and simulation techniques. The review discusses measurements of muscle moment arm during walking along with assessment of muscle mechanical advantage, muscle-tendon lengths, and the use of induced acceleration analysis to determine muscle roles. In each section of the review, examples are provided of how the auxiliary analyses have been used to gain potentially useful information about normal and pathological human walking. While this work highlights the potential benefits of adding various measures to gait analysis, it is acknowledged that challenges to implementation remain, such as the need for specialized knowledge and the potential for bias introduced by model choices.
Collapse
Affiliation(s)
- Stephen J Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Smith RE, Shelton AD, Sawicki GS, Franz JR. The effects of plantarflexor weakness and reduced tendon stiffness with aging on gait stability. PLoS One 2024; 19:e0302021. [PMID: 38625839 PMCID: PMC11020829 DOI: 10.1371/journal.pone.0302021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Falls among older adults are a costly public health concern. Such falls can be precipitated by balance disturbances, after which a recovery strategy requiring rapid, high force outputs is necessary. Sarcopenia among older adults likely diminishes their ability to produce the forces necessary to arrest gait instability. Age-related changes to tendon stiffness may also delay muscle stretch and afferent feedback and decrease force transmission, worsening fall outcomes. However, the association between muscle strength, tendon stiffness, and gait instability is not well established. Given the ankle's proximity to the onset of many walking balance disturbances, we examined the relation between both plantarflexor strength and Achilles tendon stiffness with walking-related instability during perturbed gait in older and younger adults-the latter quantified herein using margins of stability and whole-body angular momentum including the application of treadmill-induced slip perturbations. Older and younger adults did not differ in plantarflexor strength, but Achilles tendon stiffness was lower in older adults. Among older adults, plantarflexor weakness associated with greater whole-body angular momentum following treadmill-induced slip perturbations. Weaker older adults also appeared to walk and recover from treadmill-induced slip perturbations with more caution. This study highlights the role of plantarflexor strength and Achilles tendon stiffness in regulating lateral gait stability in older adults, which may be targets for training protocols seeking to minimize fall risk and injury severity.
Collapse
Affiliation(s)
- Ross E. Smith
- Joint Dept. of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| | - Andrew D. Shelton
- Joint Dept. of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| | - Gregory S. Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jason R. Franz
- Joint Dept. of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Papachatzis N, Ray SF, Takahashi KZ. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds? J Exp Biol 2023; 226:jeb245113. [PMID: 37092255 PMCID: PMC10226764 DOI: 10.1242/jeb.245113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Foot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g. heel and hallux lengths) can directly affect force production of ankle plantar flexor muscles, its effect on the metabolic energy cost of locomotion has been inconclusive. Here, we tested the hypotheses that shorter heels and longer halluces are associated with slower plantar flexor (soleus) shortening velocity and greater ankle plantar flexion moment, indicating enhanced force potential as a result of the force-velocity relationship. We also hypothesized that such anthropometry profiles would reduce the metabolic energy cost of walking at faster walking speeds. Healthy young adults (N=15) walked at three speeds (1.25, 1.75 and 2.00 m s-1), and we collected in vivo muscle mechanics (via ultrasound), activation (via electromyography) and whole-body metabolic energy cost of transport (via indirect calorimetry). Contrary to our hypotheses, shorter heels and longer halluces were not associated with slower soleus shortening velocity or greater plantar flexion moment. Additionally, longer heels were associated with reduced metabolic cost of transport, but only at the fastest speed (2.00 m s-1, R2=0.305, P=0.033). We also found that individuals with longer heels required less increase in plantar flexor (soleus and gastrocnemius) muscle activation to walk at faster speeds, potentially explaining the reduced metabolic cost.
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Samuel F. Ray
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Kota Z. Takahashi
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Jakubowski KL, Ludvig D, Bujnowski D, Lee SSM, Perreault EJ. Simultaneous Quantification of Ankle, Muscle, and Tendon Impedance in Humans. IEEE Trans Biomed Eng 2022; 69:3657-3666. [PMID: 35594215 PMCID: PMC10077951 DOI: 10.1109/tbme.2022.3175646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Regulating the impedance of our joints is essential for the effective control of posture and movement. The impedance of a joint is governed mainly by the mechanical properties of the muscle-tendon units spanning it. Many studies have quantified the net impedance of joints but not the specific contributions from the muscles and tendons. The inability to quantify both muscle and tendon impedance limits the ability to determine the causes underlying altered movement control associated with aging, neuromuscular injury, and other conditions that have different effects on muscle and tendon properties. Therefore, we developed a technique to quantify joint, muscle, and tendon impedance simultaneously and evaluated this technique at the human ankle. METHODS We used a single degree of freedom actuator to deliver pseudorandom rotations to the ankle while measuring the corresponding torques. We simultaneously measured the displacement of the medial gastrocnemius muscle-tendon junction with B-mode ultrasound. From these experimental measurements, we were able to estimate ankle, muscle, and tendon impedance using non-parametric system identification. RESULTS We validated our estimates by comparing them to previously reported measurements of muscle and tendon stiffness, the position-dependent component of impedance, to demonstrate that our technique generates reliable estimates of these properties. CONCLUSION Our approach can be used to clarify the respective contributions from the muscle and tendon to the net mechanics of a joint. SIGNIFICANCE This is a critical step forward in the ultimate goal of understanding how muscles and tendons govern ankle impedance during posture and movement.
Collapse
|
6
|
Bolus NB, Jeong HK, Blaho BM, Safaei M, Young AJ, Inan OT. Fit to Burst: Toward Noninvasive Estimation of Achilles Tendon Load Using Burst Vibrations. IEEE Trans Biomed Eng 2021; 68:470-481. [PMID: 32746041 DOI: 10.1109/tbme.2020.3005353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Tendons are essential components of the musculoskeletal system and, as with any mechanical structure, can fail under load. Tendon injuries are common and can be debilitating, and research suggests that a better understanding of their loading conditions could help mitigate injury risk and improve rehabilitation. To that end, we present a novel method of noninvasively assessing parameters related to mechanical load in the Achilles tendon using burst vibrations. METHODS These vibrations, produced by a small vibration motor on the skin superficial to the tendon, are sensed by a skin-mounted accelerometer, which measures the tendon's response to burst excitation under varying tensile load. In this study, twelve healthy subjects performed a variety of everyday tasks designed to expose the Achilles tendon to a range of loading conditions. To approximate the vibration motor-tendon system and provide an explanation for observed changes in tendon response, a 2-degree-of-freedom mechanical systems model was developed. RESULTS Reliable, characteristic changes in the burst response profile as a function of Achilles tendon tension were observed during all loading tasks. Using a machine learning-based approach, we developed a regression model capable of accurately estimating net ankle moment-which captures general trends in tendon tension-across a range of walking speeds and across subjects (R2 = 0.85). Simulated results of the mechanical model accurately recreated behaviors observed in vivo. Finally, preliminary, proof-of-concept results from a fully wearable system demonstrated trends similar to those observed in experiments conducted using benchtop equipment. CONCLUSION These findings suggest that an untethered, unobtrusive system can effectively assess tendon loading during activities of daily life. SIGNIFICANCE Access to such a system would have broad implications for injury recovery and prevention, athletic training, and the study of human movement.
Collapse
|
7
|
Holzer D, Paternoster FK, Hahn D, Siebert T, Seiberl W. Considerations on the human Achilles tendon moment arm for in vivo triceps surae muscle-tendon unit force estimates. Sci Rep 2020; 10:19559. [PMID: 33177655 PMCID: PMC7658232 DOI: 10.1038/s41598-020-76625-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/29/2020] [Indexed: 01/28/2023] Open
Abstract
Moment arm-angle functions (MA-a-functions) are commonly used to estimate in vivo muscle forces in humans. However, different MA-a-functions might not only influence the magnitude of the estimated muscle forces but also change the shape of the muscle’s estimated force-angle relationship (F-a-r). Therefore, we investigated the influence of different literature based Achilles tendon MA-a-functions on the triceps surae muscle–tendon unit F-a-r. The individual in vivo triceps torque–angle relationship was determined in 14 participants performing maximum voluntary fixed-end plantarflexion contractions from 18.3° ± 3.2° plantarflexion to 24.2° ± 5.1° dorsiflexion on a dynamometer. The resulting F-a-r were calculated using 15 literature-based in vivo Achilles tendon MA-a-functions. MA-a-functions affected the F-a-r shape and magnitude of estimated peak active triceps muscle–tendon unit force. Depending on the MA-a-function used, the triceps was solely operating on the ascending limb (n = 2), on the ascending limb and plateau region (n = 12), or on the ascending limb, plateau region and descending limb of the F-a-r (n = 1). According to our findings, the estimated triceps muscle–tendon unit forces and the shape of the F-a-r are highly dependent on the MA-a-function used. As these functions are affected by many variables, we recommend using individual Achilles tendon MA-a-functions, ideally accounting for contraction intensity-related changes in moment arm magnitude.
Collapse
Affiliation(s)
- Denis Holzer
- Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany.
| | - Florian Kurt Paternoster
- Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany
| | - Daniel Hahn
- Human Movement Science, Ruhr University Bochum, Faculty of Sport Science, Bochum, Germany.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Wolfgang Seiberl
- Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany. .,Department of Human Sciences, Human Movement Science, Bundeswehr University Munich, Neubiberg, Germany.
| |
Collapse
|
8
|
Vigotsky AD, Rouse EJ, Lee SSM. Mapping the relationships between joint stiffness, modeled muscle stiffness, and shear wave velocity. J Appl Physiol (1985) 2020; 129:483-491. [DOI: 10.1152/japplphysiol.00133.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Shear wave velocity is commonly assessed to infer the muscular origins of changes in joint stiffness, but the exact relationship between shear wave velocity changes in muscle and joint stiffness changes remains unknown. Here, we systematically evaluated and quantified this relationship in the plantar flexors. Our results provide evidence for the ability of shear wave velocity to elucidate the muscular origins of joint stiffness changes.
Collapse
Affiliation(s)
- Andrew D. Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, Illinois
| | - Elliott J. Rouse
- Neurobionics Lab, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Sabrina S. M. Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Krupenevich RL, Clark WH, Sawicki GS, Franz JR. Older Adults Overcome Reduced Triceps Surae Structural Stiffness to Preserve Ankle Joint Quasi-Stiffness During Walking. J Appl Biomech 2020; 36:209-216. [PMID: 32502975 PMCID: PMC8020011 DOI: 10.1123/jab.2019-0340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/07/2020] [Accepted: 04/07/2020] [Indexed: 11/18/2022]
Abstract
Ankle joint quasi-stiffness is an aggregate measure of the interaction between triceps surae muscle stiffness and Achilles tendon stiffness. This interaction may be altered due to age-related changes in the structural properties and functional behavior of the Achilles tendon and triceps surae muscles. The authors hypothesized that, due to a more compliant of Achilles' tendon, older adults would exhibit lower ankle joint quasi-stiffness than young adults during walking and during isolated contractions at matched triceps surae muscle activations. The authors also hypothesized that, independent of age, triceps surae muscle stiffness and ankle joint quasi-stiffness would increase with triceps surae muscle activation. The authors used conventional gait analysis in one experiment and, in another, electromyographic biofeedback and in vivo ultrasound imaging applied during isolated contractions. The authors found no difference in ankle joint quasi-stiffness between young and older adults during walking. Conversely, this study found that (1) young and older adults modulated ankle joint quasi-stiffness via activation-dependent changes in triceps surae muscle length-tension behavior and (2) at matched activation, older adults exhibited lower ankle joint quasi-stiffness than young adults. Despite age-related reductions during isolated contractions, ankle joint quasi-stiffness was maintained in older adults during walking, which may be governed via activation-mediated increases in muscle stiffness.
Collapse
Affiliation(s)
| | - William H Clark
- University of North Carolina at Chapel Hill and North Carolina State University
| | | | - Jason R Franz
- University of North Carolina at Chapel Hill and North Carolina State University
| |
Collapse
|